Index

Figures and Tables are indicated by *italic page numbers*, footnotes by suffix ‘n’

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>accrued interest</td>
<td>73</td>
</tr>
<tr>
<td>active constraint</td>
<td>122, 167</td>
</tr>
<tr>
<td>algebraic modeling</td>
<td>1</td>
</tr>
<tr>
<td>ALIAS statement</td>
<td>4, 5</td>
</tr>
<tr>
<td>mean-variance model</td>
<td>44, 47, 59</td>
</tr>
<tr>
<td>portfolio dedication model</td>
<td>32, 34</td>
</tr>
<tr>
<td>scenario-based optimization model</td>
<td>96</td>
</tr>
<tr>
<td>stochastic programming model</td>
<td>126</td>
</tr>
<tr>
<td>ASCII files</td>
<td>146</td>
</tr>
<tr>
<td>assignment statements</td>
<td>8, 11–12</td>
</tr>
<tr>
<td>bibliography</td>
<td>169</td>
</tr>
<tr>
<td>binary variables</td>
<td>12, 55, 80–1</td>
</tr>
<tr>
<td>bond cashflows</td>
<td>68, 71, 88</td>
</tr>
<tr>
<td>bond prices</td>
<td>68, 88, 123</td>
</tr>
<tr>
<td>bonds</td>
<td></td>
</tr>
<tr>
<td>coupon bearing</td>
<td>71</td>
</tr>
<tr>
<td>face value</td>
<td>67</td>
</tr>
<tr>
<td>principal and interest</td>
<td>68</td>
</tr>
<tr>
<td>yield-to-maturity</td>
<td>66, 67, 71, 87</td>
</tr>
<tr>
<td>zero coupon</td>
<td>66, 67</td>
</tr>
<tr>
<td>bootstrapping</td>
<td>47, 68, 160</td>
</tr>
<tr>
<td>borrowing</td>
<td></td>
</tr>
<tr>
<td>portfolio dedication model</td>
<td>74–83</td>
</tr>
<tr>
<td>risk-free, mean-variance model</td>
<td>51–3</td>
</tr>
<tr>
<td>stochastic dedication model</td>
<td>122–4</td>
</tr>
<tr>
<td>calendar (date and time)</td>
<td>6, 9, 65, 90</td>
</tr>
<tr>
<td>CARD</td>
<td>5, 6, 8</td>
</tr>
<tr>
<td>case studies</td>
<td>145–68</td>
</tr>
<tr>
<td>corporate bond portfolio</td>
<td>156–9</td>
</tr>
<tr>
<td>management</td>
<td></td>
</tr>
<tr>
<td>insurance policies with</td>
<td>159–64</td>
</tr>
<tr>
<td>guarantees</td>
<td></td>
</tr>
<tr>
<td>international asset allocation</td>
<td>146–56</td>
</tr>
<tr>
<td>personal financial planning</td>
<td>164–8</td>
</tr>
<tr>
<td>certainty equivalent return on equity (CeROE) as function of risk aversion parameter</td>
<td>110–11</td>
</tr>
<tr>
<td>circular sets</td>
<td>5</td>
</tr>
<tr>
<td>coherent risk measure</td>
<td>95, 106</td>
</tr>
<tr>
<td>comma-delimited files</td>
<td>see CSV files</td>
</tr>
<tr>
<td>comma-separated values</td>
<td>see CSV</td>
</tr>
<tr>
<td>command line</td>
<td>GAMS executed via, 22</td>
</tr>
<tr>
<td>Committee on Uniform Security</td>
<td>Identification Procedures 148n1, see also CUSIP identifier</td>
</tr>
<tr>
<td>co-movement approach for index funds</td>
<td>139–40</td>
</tr>
<tr>
<td>conditional compilation</td>
<td>20</td>
</tr>
<tr>
<td>conditional expressions</td>
<td>6, 9, 35</td>
</tr>
<tr>
<td>see also $-operator</td>
<td></td>
</tr>
<tr>
<td>conditional value-at-risk (CVaR) models</td>
<td>106–9</td>
</tr>
<tr>
<td>constrained nonlinear systems (CNS)</td>
<td>16, 16, 73</td>
</tr>
<tr>
<td>constraint(s)</td>
<td>13–14</td>
</tr>
<tr>
<td>$ε$-regret</td>
<td>105</td>
</tr>
<tr>
<td>active</td>
<td>122, 167</td>
</tr>
<tr>
<td>endogenous variables</td>
<td>13</td>
</tr>
<tr>
<td>in</td>
<td>13</td>
</tr>
<tr>
<td>even-lot</td>
<td>79, 80</td>
</tr>
<tr>
<td>linear</td>
<td>160</td>
</tr>
<tr>
<td>liquidity</td>
<td>114, 115</td>
</tr>
<tr>
<td>MAD</td>
<td>142</td>
</tr>
<tr>
<td>non-anticipativity</td>
<td>131</td>
</tr>
<tr>
<td>normalization</td>
<td>52</td>
</tr>
<tr>
<td>operational</td>
<td>149, 152</td>
</tr>
<tr>
<td>zero-or-range</td>
<td>56, 60, 79, 80</td>
</tr>
</tbody>
</table>
Index

continuous-time discounting, 66–8, 121
continuous variables, 12
control statements, 16–20
 FOR, 17–18
 IF, 17
 LOOP, 11, 17, 18–19, 71
 WHILE, 17, 100
convexity, 84
 factor modified, 86
corporate bond portfolio management, 156–9
corporate bonds,
 credit ratings, 89
 factor immunization for, 89–94
corporate indexed bonds,
 strategic model, 156–7
 tactical model, 157
coupon-bearing bond, 71
CSV files, 29, 83, 146
CUSIP identifier, 148–9
CVaR models, 148–9
CVaR models, 106–9
data entry, 25–8
display, 29
 multidimensional data, 29–30, 34
PARAMETER, 11, 26–7
 corporate bond management model, 157–8
 fixed-income model, 64, 65, 66, 67–8, 74, 75, 84
 insurance with guarantee model, 163–4
 mean-variance model, 44, 47, 50, 53
 portfolio dedication model, 32, 33, 34
 scenario-based optimization model, 96, 98
 stochastic programming model, 120, 121, 127, 130
SCALAR, 11, 26, 32, 34, 53, 55, 157, 161, 163
TABLE, 11, 27–8, 34, 65, 86, 127, 129–30
data generation, 31
data handling, 25–30
data management, 25–39
date and time (calendar) functions, 6, 9, 65, 90
DECIMALS option, 14
deterministic two-stage program, 125–6
discount factor, 66
discrete-time calculations, 68
discrete variables, 12, 53
DISPLAY statement, 26, 29, 33
diversification, 53
 limits, 53–4
$-control commands, 3, 20
 $IF, 3, 20
 $INCLUDE, 3, 28, 33, 73, 83, 96, 148, 166
 $LABEL, 3, 20
 $LOAD, 42, 57
 $OFFDELIM, 29, 83, 166
 $OFFLISTING/$ONLISTING, 3, 148
 $ONDELIM, 29, 83, 166
 $SET, 3, 20
$-operator, 7, 8–9, 10, 20, 35, 46, 75, 162, 163
$-operator see $-control commands
dollar-sign controls see $-control commands
dollar-sign operator see $-operator
dot notation, 6
downside risk, 99, 100, 122
duration,
 drift,
 factor modified, 86
 Fischer–Weil, 84
dynamic portfolio optimization,
 for fixed-income securities, 119–24
 with stochastic programming, 119–35
dynamic sets, 6, 58–61
efficient frontier,
 conditional value-at-risk model, 108, 109
 integrated indexation model, 155
 mean absolute deviation (MAD) model, 102, 103
 mean-variance (MV) model, 43, 44, 46, 48
 international diversification and, 58, 61
 with risk-free borrowing, 51
Index

with short sales, 48–9
put/call model, 114, 115
regret model, 105–6
selective hedging model, 142–3
end-of-line comment, 4
exogenous variables, 13, 28
equation(s), 13
attributes, 14
\(L\), 14
\(LO\), 14, 56
\(M\), 14, 29
\(UP\), 14, 56
dual, 113
EQUATION, 13, 80
factor immunization model, 86
international asset allocation, 150
mean-variance model, 53, 56
primal, 113
relational operators, 13
stochastic programming model, 121–2, 126
even-lot constraints, 79
Excel, communications with GAMS, 29, 44, 137
exchange-rate scenarios, 146
exogenous variables, 28
expected returns, calculation, 42, 47
expressions, 2, 6
extended arithmetic, 11
external data files, 28–9
factor immunization models, 85–9
for corporate bonds, 89–94
with correlated credit rating classes, 91
with uncorrelated credit rating classes, 90
factor loadings, 86, 89
Fibonacci numbers, 19–20
FINLIB library, 22
files listed, 39
 corporate bond portfolio management, 145, 159
 fixed-income models, 63, 74, 76, 79, 82–3, 85, 89, 94
 index fund model, 137, 143
insurance policies with guarantees, 145, 164
international asset allocation, 145, 156
mean-variance models, 41, 49, 53, 57, 61
personal financial planning, 145, 168
scenario-based optimization models, 95, 97, 103, 106, 108, 111, 117
stochastic programming models, 119, 124, 128, 133
Fischer–Weil duration, 84
fixed-income modeling,
 basics, 64–74
 considerations for realistic modeling, 73–4
fixed-income portfolio optimization, 63–94
fixed-income securities,
dynamic optimization for, 119–24
see also bond(s)
FOR statement, 17–18
forward rate(s), 67, 69–70, 72
functions, 6, 8, 10–11
calendar (date and time), 6, 9, 65, 90
CARD, 5, 6, 8
listed, 8
ORD, 5, 6, 8, 34
PROD, 8, 10, 162, 163
SAMEAS, 10–11
SMAX, 8, 10
SMIN, 8, 10
SUM, 8, 10, 50
GAMS, 1–23
 command line interaction, 22
 communications with Excel, 29, 44
 compiler, 2
 creating new GAMS project, 21
 Data Exchange see GDX
 executing GAMS models, 21
 as financial calculator, 66–8
 model library, 22
 opening existing GAMS project, 21
 output, 35–9
http://www.pbookshop.com
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAMS IDE</td>
<td>2, 21</td>
</tr>
<tr>
<td>project file</td>
<td>21</td>
</tr>
<tr>
<td>GAMS language</td>
<td>2–20</td>
</tr>
<tr>
<td>lexical conventions</td>
<td>3–4</td>
</tr>
<tr>
<td>GDX</td>
<td>29, 137</td>
</tr>
<tr>
<td>GDX container</td>
<td>42, 57, 146</td>
</tr>
<tr>
<td>GDX utility</td>
<td>GDXXIN, 42, 57, 137</td>
</tr>
<tr>
<td>GDX utility</td>
<td>GDXXRW, 44, 137, 146</td>
</tr>
<tr>
<td>General Algebraic Modeling System</td>
<td>see GAMS</td>
</tr>
<tr>
<td>graphical user interface</td>
<td>GAMS executed via, 21</td>
</tr>
<tr>
<td>see also Integrated Development Environment</td>
<td></td>
</tr>
<tr>
<td>hedging</td>
<td>58, 85, 140</td>
</tr>
<tr>
<td>partial</td>
<td>140, 143</td>
</tr>
<tr>
<td>selective</td>
<td>140–3</td>
</tr>
<tr>
<td>horizontal return model</td>
<td>78–9</td>
</tr>
<tr>
<td>IP statement</td>
<td>17</td>
</tr>
<tr>
<td>immunization model</td>
<td>83–5</td>
</tr>
<tr>
<td>with extended scenario-dependent variables and constraints</td>
<td>121</td>
</tr>
<tr>
<td>index funds</td>
<td>137–43</td>
</tr>
<tr>
<td>co-movement model</td>
<td>139–40</td>
</tr>
<tr>
<td>selective hedging model</td>
<td>140–3</td>
</tr>
<tr>
<td>structural model</td>
<td>138–9</td>
</tr>
<tr>
<td>indices (sets)</td>
<td>4–5, 26</td>
</tr>
<tr>
<td>insurance policies with guarantees</td>
<td>159–64</td>
</tr>
<tr>
<td>integer programming</td>
<td>81–2, 106</td>
</tr>
<tr>
<td>integer variables</td>
<td>12, 16, 79, 80</td>
</tr>
<tr>
<td>Integrated Development Environment</td>
<td>2, 21</td>
</tr>
<tr>
<td>see also GAMS IDE</td>
<td></td>
</tr>
<tr>
<td>integrated indexation model</td>
<td>152</td>
</tr>
<tr>
<td>interest-rate change factors</td>
<td>89</td>
</tr>
<tr>
<td>interest rate risk</td>
<td>83</td>
</tr>
<tr>
<td>interest-rate scenarios</td>
<td>146</td>
</tr>
<tr>
<td>international asset allocation</td>
<td>146–56</td>
</tr>
<tr>
<td>international portfolio management</td>
<td>57–61</td>
</tr>
<tr>
<td>implementation with dynamic sets</td>
<td>58–61</td>
</tr>
<tr>
<td>ITERLIM option</td>
<td>14, 16, 82</td>
</tr>
<tr>
<td>mean-variance (MV) model</td>
<td>42–9</td>
</tr>
<tr>
<td>basics</td>
<td></td>
</tr>
<tr>
<td>compared with mean absolute deviation model</td>
<td>101–3</td>
</tr>
<tr>
<td>data estimation</td>
<td>46–7</td>
</tr>
<tr>
<td>for international portfolios</td>
<td>57–61</td>
</tr>
<tr>
<td>Sharpe ratio maximization</td>
<td>50–3</td>
</tr>
<tr>
<td>short sales allowed</td>
<td>48–9</td>
</tr>
<tr>
<td>leads and lags (indices in sets)</td>
<td>5</td>
</tr>
<tr>
<td>LIMCOL option</td>
<td>14, 38</td>
</tr>
<tr>
<td>LIMROW option</td>
<td>14, 37</td>
</tr>
<tr>
<td>linear constraint</td>
<td>160</td>
</tr>
<tr>
<td>linear programming</td>
<td>1, 11, 35, 84, 103, 107, 113, 138</td>
</tr>
<tr>
<td>liquidity constraint(s)</td>
<td>114</td>
</tr>
<tr>
<td>put/call efficient frontiers affected by</td>
<td>115</td>
</tr>
<tr>
<td>liquidity premia and discounts</td>
<td>116</td>
</tr>
<tr>
<td>listing file</td>
<td>35–6</td>
</tr>
<tr>
<td>logical operators</td>
<td>7, 9</td>
</tr>
<tr>
<td>LOOP statement</td>
<td>11, 17, 18–19, 71</td>
</tr>
<tr>
<td>loss function</td>
<td>107</td>
</tr>
<tr>
<td>MAD constraint</td>
<td>142</td>
</tr>
<tr>
<td>MAD model(s)</td>
<td>97–104</td>
</tr>
<tr>
<td>compared with MV model</td>
<td>101–3</td>
</tr>
<tr>
<td>international asset allocation</td>
<td></td>
</tr>
<tr>
<td>application</td>
<td>146</td>
</tr>
<tr>
<td>Markowitz model</td>
<td>41</td>
</tr>
<tr>
<td>mathematical programming</td>
<td></td>
</tr>
<tr>
<td>dual problem</td>
<td>113</td>
</tr>
<tr>
<td>dual variables</td>
<td>35, 117</td>
</tr>
<tr>
<td>linear problem</td>
<td>1, 11, 35, 103</td>
</tr>
<tr>
<td>nonlinear problem</td>
<td>13, 53, 88, 162</td>
</tr>
<tr>
<td>primal problem</td>
<td>113</td>
</tr>
<tr>
<td>mean absolute deviation</td>
<td>see MAD model</td>
</tr>
<tr>
<td>mean absolute deviation efficient frontier</td>
<td>102, 103</td>
</tr>
<tr>
<td>mean-CVaR efficient frontier</td>
<td>108, 109</td>
</tr>
<tr>
<td>mean-variance efficient frontier</td>
<td>43, 44, 46, 48</td>
</tr>
<tr>
<td>international diversification and</td>
<td>58, 61</td>
</tr>
<tr>
<td>with risk-free borrowing</td>
<td>51</td>
</tr>
<tr>
<td>with short sales</td>
<td>48–9</td>
</tr>
<tr>
<td>mean-variance (MV) model</td>
<td></td>
</tr>
<tr>
<td>basics</td>
<td>42–9</td>
</tr>
<tr>
<td>compared with mean absolute deviation model</td>
<td>101–3</td>
</tr>
<tr>
<td>data estimation</td>
<td>46–7</td>
</tr>
<tr>
<td>for international portfolios</td>
<td>57–61</td>
</tr>
<tr>
<td>Sharpe ratio maximization</td>
<td>50–3</td>
</tr>
<tr>
<td>short sales allowed</td>
<td>48–9</td>
</tr>
</tbody>
</table>
Index

mean-variance portfolio optimization, 41–61
mean-variance risk attitude, 43
mixed-integer risk attitude, 43
model, 14
attributes, 14–15
HOLDFIXED, 15
MODEL, 14
types, 15–16
model classification, 15–16
CNS, 16, 16, 73
DNLP, 13, 16, 16
LP, 15, 16
MINLP, 16, 16, 54
MIP, 15, 16, 80
NLP, 13, 16, 16
RMIP, 16, 16
model library, 22
model status,
infeasible, 15, 37, 39
locally optimal, 15
optimal, 15, 38
unbounded, 15
mortgage-backed securities (MBSs), 129, 130–1
multidimensional data, 29–30, 34
neutral element, 10
non-anticipativity constraint, 131
nonlinear programming, 13, 53, 162
normalization constraint, 52
operational constraints, 149, 152
operators, 6
$-operator, 7, 8–9, 10, 20, 35, 46, 75, 162, 163
listed, 7
logical, 7, 9
relational, 7, 9, 13
OPTCR option, 14, 16, 82
OPTION statement, 14, 29
options, 14
DECIMALS, 14, 29
ITERLIM, 14, 16, 82
LIMCOL, 14, 38
LIMROW, 14, 37
LP, 15
model, 14
MODELSTAT, 15, 151
OPTCR, 14, 16, 82
RESLIM, 14, 16, 82
SOLVEOPT, 60, 69
solver, 15
ORD, 5, 6, 8, 34
parallel assignment, 19–20
PARAMETER, 11, 26–7
corporate bond management model, 157–8
fixed-income model, 64, 65, 66, 67–8, 74, 84
insurance with guarantee model, 163–4
mean-variance model, 42, 44, 47, 50, 53
portfolio dedication model, 32, 33, 34
scenario-based optimization model, 96, 98
stochastic programming model, 120, 121, 127, 130
partial hedging, 140, 143
personal financial planning, 164–8
portfolio dedication model,
borrowing and reinvestment included, 74–83
formal model, 31
GAMS model, 34, 74
data and parameter settings, 32–3
variables and equations, 33
portfolio models,
diversification limits and, 53
factor immunization models, 85–94
fixed-income models, 63–94
horizon return model, 78–9
immunization models, 83–5
international portfolio management, 57–61
Sharpe ratio maximization, 50–3
transaction costs and, 54–6
yield maximization, 87–9
portfolio rebalancing/revision, 56, 57
Index

present value, 67–8, 84

PROD, 8, 10, 162, 163

project file see GAMS IDE

put/call efficient frontier, 114, 115

put/call models, 111–17

PUT statement, 30, 43, 71

recurrence relation, 20

regret models, 104–6

reinvestment rate, 75–6, 76

relational operators, 7, 9, 13

RESLIM option, 14, 16, 82

return constraint, 142

return on equity (ROE), 110

see also certainty equivalent return on equity

return uncertainty, 126

risk,

attitudes, 43

averse, 43, 44, 109

cohort measure, 95, 106

downside, 99, 100, 122

interest rate, 83

neutral, 43, 109

seeking, 109

tilt, 92, 93

upside, 99, 100

variance–covariance matrix, 42

volatility, 43

risk aversion parameter, 43

certainty equivalent return on equity and, 110–11

portfolio composition affected by, 45, 49, 52, 55, 57

risk-free borrowing, 51–3

Salomon Brothers bond index, 146, 147, 152, 155

SAMEAS, 10–11

SCALAR, 11, 26, 32, 34, 53, 55, 157, 161

scenario-based portfolio optimization, 95–117

scenario generation, bootstrapping method, 47, 160

selective hedging model for index funds, 140–3

sets, 2, 4–6

ALIAS statement, 4, 5

mean-variance model, 44, 47, 59

portfolio dedication model, 32, 34

dynamic, 6, 58–61

explanatory text, 4

indices, 4–5, 26

leads and lags, 5

multidimensional, 5–6

subsets, 5, 12, 47

YES, 6

Sharpe ratio, 50, 152

Sharpe ratio model, 50–3

short sales,

in fixed-income models, 92

in mean-variance models, 48–9, 54

not allowed, 42–3, 45, 92

single premium deferred annuities (SPDA), 128–35

SMAX, 8, 10

SMIN, 8, 10

SOLVE, 15, 17

MAXIMIZING, 15, 18, 19, 43, 53, 84, 87, 88, 100, 128, 133, 158, 167

MINIMIZING, 15, 33, 69, 70, 71, 75, 80, 85, 124

solvers, 2

special values,

EPS, 11, 39

INF, 11

NA, 11

UNDF, 11

split-variable formulation, 124–5, 131, 132

spot rate(s), 66, 68, 69, 70, 72, 120

static sets, 4–6

stochastic dedication model, 120–2

borrowing and lending, 122–4

stochastic index, 100

stochastic programming, 119–35

stochastic programs,

multi-stage, 128–35

two-stage, 124–8

stochastic two-stage program, 127–8

structural model for index funds, 138–9

subsets, 5, 12, 47

http://www.pbokshop.com
Index

SUM, 8, 10

TABLE, 11, 27–8, 34, 65, 86, 127, 129–30
target return, 58, 98
term structure, 67, 83
 bootstrapping, 68–73
tilt risk, 92, 93
time modeling, 64–6
tracking models, 99–101, 158
tradeability, 79–82
transaction costs, 54–6, 80
 fixed/flat, 54, 55, 79
 proportional, 54, 55
upside risk, 99, 100
utility function, 109
utility maximization models, 109–11

value-at-risk (VaR) concept, 106
VaR, 106
 benchmark, 107
variable(s),
 attributes, 12–13
 FX, 13, 15
 L, 13, 29

LO, 13, 29
M, 13, 29
UP, 13, 29
bounds, 12
classification/declaration, 12–13
 BINARY, 12, 55, 80–1
 FREE, 12
 INTEGER, 12, 16, 80
 NEGATIVE, 12
 POSITIVE, 12, 35
continuous, 12
discrete, 12, 53
endogenous, 13, 28
exogenous, 28

variance–covariance matrix, 42

WHILE statement, 17, 100

yield, 66, 83
yield maximization, 87–9
yield-to-maturity of bond, 66, 67, 71, 87
zero coupon bond, 66, 67
zero-or-range constraints, 56, 60, 79, 80

Index compiled by Paul Nash