

Absolute constant, 119
Absolute moments metric, 75
Absolute risk aversion
decrease, 147, 152
formal measure, 146
Absolute value, removal, 306
Active portfolio return, 318
definition, 288
Active strategy
expectations, 287
usage, 289-290
Affine, 52 n
Allegheny Energy Inc., stock, 301n
Allied Capital Corp., stock, 301n
Almost everywhere identity, 84-85
Alpha. See Portfolio
threshold. See Expected alpha
Alpha quantile (α-quantile), 16
obtaining. See Continuous probability distributions
Alpha stable (α-stable), 121
Alpha-stable distributions. See Lévy
alpha-stable distributions
AMB Property Corp., stock, 301 n
Analytic functions, 277
Approximation of Poiscon, 103
Arbitrary random variabie, 31
Arbitrary real numbers, limits, 53
Archimedean axiom, 162
Arrow, Kenneth, 140
Asset pricing theory, 17
Assets
continuous return (log-return), assumption, 25
expected returns, 43
grouping constraints, portfolio manager
imposition, 275
prices
correspondence, 25-26
dependence structure, 25
random return, 250
return. See Expected assets return covariances, 249
Asymmetric phenomenon, 172

Asymmetry, probability distribution function descriptor, 13-14
Asymptotic neglibility, 117
condition, 131-132 holding, 132
Attraction, domain. See Domain of attraction
Auxiliary variables, vector, 261
AVaR. See Average VaR
Average active return 3 Fi: $^{\text {a }}$
calculation, STARR (usage), 318
Average comporend metric, selection, 305-306
Average los valculation, 129-130
Average metric. See Distribution function
Averape portfolio underperformance, measurement, 306
Average realized active portfolio return, 329
comparison, 326
Average VaR (AVaR), 200, 207-214. See also Return; Tail probability
absolute difference, upper bound (possibility), 226
alternative, 230
appendix, 227-243
backtesting, 220-222
failure, 221
bibliography, 244
change, 240-241
coherent risk measure, example, 197-198
computation, 212. See also Portfolio AVaR
contrast. See Expected tail loss
definition connection, 212
consequence, 214 n
quantile function, integral, 232-233
empirical observations, 215
estimation, 214-217
hybrid method, adaptation, 218
sample, usage, 223-224, 263
ETL, relationship, 237-238
examples, 226
fluctuation, boxplot diagrams, $220 f$
geometric interpretation, 212

Average VaR (AVaR), 200, 207-214. See also Return; Tail probability (Continued)
geometric representation, 211 f
introduction, 207-208
linearization, 352
minimization formula, 232-235
numbers, 219
optimization problem, 260
risk measure selection, 246
selection, 260
tail probability, 332
usage. See Stable distributions
Average VaR of order one, 231
Aversion coefficient, 269
Axiomatic construction, 73-74. See also Probability
Axiomatic description, 178-179
Axioms, usage, 305-307

Backtesting. See Value-at-Risk
Backward-looking tracking error (ex post tracking error), 289
Basel Committee on Banking Supervision, 172n-173n
amendments, release, 182
Bayes formula, 18
Benchmark
deviation, 86
portfolio, return, 319, 345
complication, 323
relationship. See Probability metrics
risk profile, matching, 289-290
Benchmark return
inverse distribution fuiction, 303
reduction, 337 f
risk-free rate, equivalence, 342
standard deviation, 299
variance, 314,323
Benchmark tracking, 85
appendix, 304-315
bibliography, 315
numerical example, 300-304
Benchmark tracking problems, 300
equations, application, 312-313
introduction, 287-288
setting, 306 examples, 311-312
Bernoulli, Daniel, 142-143
Bernoulli, Jacob, 103
Bernoulli-distributed random variable, 3
Bernoulli distribution, 3
natural generalization, 4

Berry-Essen result, 105
Berry-Essen theorem, 119n
Binomial c.d.f., result, 111f
Binomial c.d.f.s. See Centered binomial c.d.f.s.; Normalized binomial c.d.f.s.

Binomial coefficient, 106-107
Binomial distribution, 3-4
probabilistic properties, 109
usage, 107-108
Binomial path, path closeness, 111
Binomial trees, construction, 111
Birnbaum-Orlicz average distance, 96
Birnbaum-Orlicz compound average distance, 98
Birnbaum-Orlicz compound metric, 86 selection, 305
usage. See Symmetry avicm
Birnbaum-Orlicz comnound uniform distance, 98
Birnbaum-Orlicz disalance, definition, 102
Birnbaum-Orlic? Inetric, 126
Birnbaum-O. licz quasisemimetric, consiciration, 311
Birn'baum. Orlicz uniform distance, 96
Black-Scholes equation, 104
Borei sets, 2 n
Bounded interval, 235
Bounded risk spectra, 242
Box-and-whiskers diagram, 191n
Box-type constraints, 275
Boxplot, 191n
diagrams. See Average VaR; 99\% VaR
Brownian motion, 104

Cambanis-Simons-Stout theorem, 100 applicability, 309 application, 100-101
Fréchet-Hoeffding inequality, relationship, 102
usage, 308-309
Capital Asset Pricing Model (CAPM), 340
Capital market line, 257 f
generation, mean-variance analysis (usage), 353-354
quasiconcave ratios, relationship, 353-356
Sharpe ratio, relationship, 340-343
Capital reserve, VaR equivalence, 182
CAPM. See Capital Asset Pricing Model
Cash invariance, 196
Cauchy-Bunyakovski-Schwarz inequality, 89
c.d.f. See Cumulative distribution function

c.d.f.s. See Cumulative distribution functions; Discrete cumulative distribution functions
Centered binomial c.d.f.s., 113 f
Centered moment of order, 15
Centered normal distribution, limit distribution, 112-113
Centered portfolio return, distance measurement, 295
Centered sum
denotation, 119, 133
distribution, convergence, 115, 117
Centering, procedure. See Random variables
Central absolute moments, 178-179
Central Limit Theorem (CLT), 4, 61. See also Classical CLT; Generalized CLT; Max-stable CLT
application. See Financial assets
conditions, 131-133
holding, 117
implication, 115
necessary conditions, 133
result, 113
special case, 103-104
statement, 10
sufficient conditions, 133
Central moment. See Second central moment
rescaling. See Fourth central moment;
Third central moment
Characteristic function, 121
Chebyshev's inequality, 30-31
demonstration, 30
geometric illustration, 31f
usage, 175
Choice
axioms, 161-163
problem. See Por fo, 1
uncertainty, impact appendix, 161-169 bibliography, 169-170 choice, 139 introduction, 139-141
Classical CLT, 105-119
general case, 112-118
regularity conditions, 115-117
Closed-form solution, obtaining, 279
Closeness, determination, 290
CLT. See Central Limit Theorem Codomain, 41n
Coefficients, determination, 239
Coherent reward measure, 282
Coherent risk measures, 173-174
assumption, 267, 319n
axioms, 210
class, identification, 266
identification, 194-198
subfamily, dispersion measures
(connection), 268
usage, 232
Coins
independent tosses. See Unfair coins
pair, joint distributions. See Fair coins
tosses, experiment, 112-113
tossing experiment, 193
Commodities, state-contingent bundles
(consideration), 140
Common stocks
daily log-returns, observation, 123
equal shares, 180
inclusion. See Portfolio
price
consideration, 114
random variable, description, 155
return distrin ution, 76
desci ivion, random variables (usage), (7), 83

Var 79
Complementary slackness conditions, 55
Cornpleteness, 162
Compound distances, 97-98
Compound functional, 92-93
Compound metrics, 62-63. See also
Birnbaum-Orlicz compound metric; Ky
Fan metric; p-average compound metric
category, 84-86
upper bound, 88
usage, 72-90
Compound r.d. metrics, 296
Concave function, 41
Concave order, equivalence. See
Rothschild-Stiglitz stochastic dominance
Concave utility function, 146
Concavity, assumption, 151
Condition of Lindeberg-Feller. See Lindeberg-Feller
Conditional distribution, tail variance, 229
Conditional loss
c.d.f., inverse distribution function, 230
dispersion, 229
distributions, characteristics, 228-230
median, 213n
Conditional probability, 11
explanation, 18
Conditions, tail behavior (basis). See Spectral risk measures

Confidence intervals, 190-191. See also
Exceedances
calculation. See 95\% VaR
Confidence levels
parameters, 182
VaRs (absolute differences, sum), 81-82
Consistency rule, 93
pair satisfaction, 93-94
Constrained optimization, 48-58. See also
Unconstrained optimization
Constraint set, 35
identification, 48
linear equalities/inequalities, 58
Constraints. See Box-type constraints types, 274-276
Continuity condition, 162
Continuous c.d.f., assumption, 233
Continuous distribution
function, expectation, 233 f
parameters, formulae, 15 f
Continuous probability distributions, 5-12
alpha quantile, obtaining, 16 n
formula, 15, 16
Continuous random variable, 5
zero value, 6-7
Contour lines. See Tangential contour line;
Two-dimensional quasiconvex function
representation, 39 f
transformation. See Copula density
Convergence, induction, 98
Convex dispersion, 173
Convex functions, 40-46, 101
application. See Risk management
continuousness, 42
definition, illustration, $4, f$
differentiation, absunce, 12
domain, 42
local minima, 42
properties, 42
satisfaction, 41
sum, 42-43
Convex optimization
problem, 284-285
subcases, 49
Convex problems, 35
Convex programming, 49
problem, 348-352
programs, form, 52-53
usage, 52-55
Convex reward measure, ratio, 356
Convex risk measures, 201-202
assumption, $319 n$
ratio, 356

Convex sublevel sets, 47 f
Convexity, 201
assumption, 280
implication. See Optimization
property, 279-280, 351
Copula. See Maximal copula; Minimal copula
etymology, 26
function, 27
indifference, 26
probability distribution, equivalence, 32
usage, advantages, 26
Copula density. See Two-dimensional normal distribution
contour lines, transformation, 27-28
correspondence, 27
increase, 29
Copula functions, 25-3t
mathematical perspective, 26
Correlation, 20-21
coefficient, beunds, 89
covariance relacionship, 21
matrix, equation, 250
Covariance, 20-21
derotation, 21
cetermination, 187
matrix. See Stocks; Variance-covariance matrix
examination, 250
inverse, denotation, 342-343
representation, 93-94
Credit risk, 172-173
contrast, 11
Cumulative distribution function (c.d.f.),
5-8. See also Discrete cumulative distribution functions; Normal distribution
argument, 19
cross, 208
description, 143
formula, 12
inverse distribution function. See
Conditional loss
involvement, 147
n-th integral, 164
possibility, 120n
properties, 357-358
result. See Binomial c.d.f.
speed, 119
terms, expression, 236-237
usage, 27
Cumulative distribution functions (c.d.f.s.), 245

Cumulative probability function, 7-8
Cumulative prospect theory, 140-141
Curve area, calculation, 7
de Moivre, Alexander (theorem), 103
de Moivre-Laplace, theorem, 103-104
adaptation, 110
local theorem, 109n
usage, 108-109
Debreu, Gérard, 140
Debt obligations, default (consideration), 2-3
Decision making (theory), uncertainty (impact), 140
Decomposition, application, 268-269
Default
annualized probability, 3
intensity, 11
rate, 11
Degree of freedom, 12
Degree of homogeneity, impact, 303-304 examination, 301
Degrees. See Positive homogeneity of degrees
Densities
absolute difference, 127 f
plots, 209 f
uniform distance, 127-128
uniform metric illustration, 82 f usage, 92-93, 126
Density function, 6. See also Probability density function; t-distribution
argument, 19
denotation, 6
distances, measuremen 27
Density generator, 25
Density graphs. See Nugatively skewed distribution; Positively skewed distribution
Dependence
local structure, 28-29
measure, 25
Derivatives, calculation, 45n. See also Partial derivatives
Deviation. See Standard deviation measures, 179, 198. See also Symmetric deviation measures characteristics. See Downside deviation measure r.d. metrics, relationship, 305

Die
c.d.f.s., plot, 67 f
faces, probabilities, 63 t
inverse c.d.f.s., plot, 68 f
Differentiable function, minima/maxmia, 37-40
Discrete cumulative distribution functions (c.d.f.s.), 66. See also Centered binomial c.d.f.f.; Inverse c.d.f.s.; Normalized binomial c.d.f.s.
absolute differences, 76f, 78f
deviation, 118
plot, 67 f
Discrete distribution, parameters (formulae), $15 f$
Discrete probability distributions, 2-5
moment of order, calculation, 15
Discrete random variables
characteristics, 65-66
example, 63
payoff, 145
Dispersion, probabilit distribution function descriptor, 13
Dispersion meavures, 173, 349. See also Downsice dispersion measure 177-178; Upside dispersion measure
axionatic introduction, 333
contrast. See Risk
1riationship. See Probability metrics; Risk measures
Distances, measurement, 293. See also Centered portfolio return
characteristics, sets, 63-64
discrete case, 62-72
Distribution
convergence, metrizing, 134 n
functional, 174 n
mean, 172
Distribution function, 7, 64-68. See also Cumulative distribution function; Normal distributions; Probability; Two-dimensional random variable
coincidence, 84
consideration. See n-dimensional random vector
continuousness, absence, 8
differentiation, absence, 8
first-order partial derivatives, 19
first-order Taylor series approximation, 83n
illustration, 298f, 299f
inverse, 183
involvement, 84
jump, existence, 9 f
L_{p}-metrics, 79, 126
probability, 159 f
simple metrics, 75

space, average metric, 80-81
Diversification
effect, recognition, 185-186
variance, degree (measurement), 258
Domain, 41n. See also Codomain
Domain of attraction, 10 property, 104n
Downside deviation measure, characteristics, 180
Dual stochastic order, 161
Ducats, payoff, 142 n

Economic agent
preference, 144
preference relation/order, 144
Efficient frontier. See Mean-risk efficient frontier; Mean-variance efficient frontier
concave shape, 265-266
correspondence, 252
description, 258
generation, minimal tracking error problem (usage), 291f
illustration, 263, 290
linear section, nonunique tangent portfolios, 347 f
plot, 264f
portfolios, selection, 265 f
representation, standard deviation (usage, 253-254
tangent portfolio
mean-shifted risk plane, 322 f
relationship, 321f
Efficient portfolios, 320
relationship. See Reward-tc-risk ratio; Reward-to-variab lity ratio
set, 262
Efficient sets, 154
Elements. See Random elements
Elliptical distributions, 23-25. See also n-dimensional random vector
EMC Corp/Massachusetts, stock, 301n
Empirical inverse distribution functions, 314
Empirical r.d. metric, simplification, 314-315
Engineer's metric, 75
Enhanced indexing, 290
Equality constraints
defining, 53
zero value, 49
Equally weighted portfolio
inverse distribution function, 302 f
usage, 301
Equity portfolios
consideration, 293-294
strategies, classification, 290n
Equivalence, meaning, 91-92
ETL. See Expected tail loss
Euclidean metric
appearance, 91
example, 90
Event. See Rare events
dependence. See Extreme events
joint probability, 18
probability, 6f, 20. See also Random variable
equivalence, 106
Ex ante analysis, 289
Ex ante forward-looking tracking error, 289-290
Ex post analysis, 288-289. See also
Strategies performance
Ex post tracking erto see
Backward-looking tracking error
Exceedances, co ntidence interval, 193
Excess kurto is, 13
Expectations bounded coherent risk measure, decomposition, 327
Expested alpha
ipwer bound, imposition, 295-296
threshold, 290
Expected assets return, 248
Expected payoff, 142
increase, 148-149
Expected portfolio return, 248
equation, 250
impact, 267-268
lower bound, 259
representation, 278
Expected returns. See Portfolio; Stocks constraint, variance, 252
portfolio. See Maximum expected return portfolio
variances, equivalence, 74
Expected risks/rewards, balancing, 35
Expected shortfall, 209
Expected tail loss (ETL), 228. See also Tail probability
AVaR, contrast, 236-241
graphs, 240f
natural estimator, 238-239
reduction, 241
relationship. See Average VaR
step function. See Tail probability
Expected utility
maximization problem, relationship. See Mean-variance analysis

representation, uniqueness, 165
theory, 139-140
usage, 141-147
Expected value, 14
Exponential distribution, 10-11
centered sum
c.d.f.s., 116 f
density functions, $116 f$
convergence, 115
normalized sum
c.d.f.s., 116 f
density functions, $116 f$
Exponential smoothing algorithm, 188
Exponential utility function, 147
Exponentially declining weights, attachment. See Historical returns
Extrema, 37
characterization, 37-38
Extreme events, dependence, 26
Extreme value distribution, 12. See also Fréchet-type extreme value distribution; Generalized extreme value distribution;
Gumbel-type extreme value distribution;
Weibull-type extreme value distribution

Failure rate, 11
function, 167-168
Fair coins (pair)
heads, occurrence (probabilities), 108f
108t
independent tosses, 111f
indistinguishability, 69
joint distributions, 68-69
one-dimensional distributions, metric
(application), 71-72)
outcomes, joint probailuies, 69t, 71 t maximal metrie 11
minimal metric, yield, $70 t$
Fat-tailed distribution, application details, 123n
Feasible points, set. See Set of feasible points
Feasible portfolios
portfolio return, 346
set, 275-276, 278
zero/negative risk, 324
Feasible set, tangential contour line, 57 f
Feasible set of portfolios, convexity, 324n
Feasible solutions, set, 35
Financial assets
consideration, 248
modeling
CLT, application, 117-118
stable distributions, usage, 122-124

Financial institutions, 173
Financial variables, summation (meaning), 113-115
Finite mathematical expectation, 95
First difference pseudomoment, 80-81
First-order condition
representation, 38
solution. See Unconstrained optimization
sufficiency, 40
First-order partial derivatives. See Distribution function
First-order stochastic dominance (FSD), 141, 148-149
illustration, 149 f
order, 154, 157
characterization, 200
consideration, 160
First-order Taylor ser es approximation. See Distribution function
First quartile, $15{ }^{\circ}$
Fisher's kurtosis, 15
Fisher's skew ness, 14-15
Ford Motor Company, survival (condition), 11
4.0% tail probability, 263
1 orward-looking tracking error. See Medium-sized forward-looking tracking error; Small-sized forward-looking tracking error
Foundation of Statistics, The (Savage), 140
Fourier transform, 120n
Fourth central moment, rescaling, 14
Fractional problem, solution, 348
Fractional program, 345-346. See also Quasiconcave fractional program
Fréchet-Hoeffding inequality, 32
distribution function, relationship, 101-102
relationship, 102
two-dimensional case, 32
upper bound, 309
usage, 308-309
Fréchet lower bound, 32
Fréchet-type extreme value distribution, 12
Fréchet upper bound, 32
Freedom, degree. See Degree of freedom
FSD. See First-order stochastic dominance
Function
mathematical rule, 41n
real number, assignation, 41n
Function gradient, 38

Functional. See Compound functional; Distribution; Maximal functionals; Minimal functionals; Translation invariant functional; Weakly regular functional
definition, 41n, 73n
equations, usage, 297
generation, deviation measure (usage), 296
Functional Limit Theorem, 104
Functional limit theorems, 61
Funding cost, 77
Future return, probability, 18

Generalized CLT, 61, 104
context, 124
knowledge, 222
limit distributions, 123
problems, study, 125
stable distributions, 120-122
usage, 120-124
Generalized extreme value distribution, 12
Generalized Rachev ratio, 357-358
Gini-type ratio, 356
Glivenko-Cantelli theorem, 241n
Global minimum. See Objective function
attaining, 36
minimal value, 47
Global minimum risk portfolio, 263
impact, 272
solution, 267-268
value, coinciding, 269 n
Global minimum variance perifolio obtaining, 252
portfolio, calculatiol 255
Government secusit, ewning return, 197
Gradient. See Zero g*adient
components, computation, 45 n
Gumbel-type extreme value distribution, 12

H-average compound distance, 97
Hazard rate, 11
function, 167-168
Heads
occurrence, 106 probability, 108t
Higher-order AVaR, 213
monotonic sequence, 232
notion, 227-228
usage, 230-232
Higher-order tail moments, 228-229
Hill estimator, 222

Historical method. See Portfolio AVaR; Portfolio VaR
Historical returns, exponentially declining weights (attachment), 188
Homogeneity, impact (examination). See Degree of homogeneity
Homogeneity property, 125
financial interpretation, 125
Hybrid method. See Portfolio AVaR; Portfolio VaR
Hypercube. See Unit hypercube

Ideal metrics, 105
finiteness, guarantee, 134
identification, 124-125
interpretations, 128-131
remarks, 133-136
Ideal probability metries, 103
appendix, 131-136
bibliography, 136-137
introduction 103-105
Identity axiom, 125
Identitymatrix, denotation, 330
Ident tv property, 91
identification, 91
Incependence axiom, 162
independent and identically distributed (i.i.d.). See Summands
infinite variance random variables, 104
observations, 188
random variables, convergence, 120
Independent distribution. See Random variable
Independent identically distributed (i.i.d.), 61
Independent tosses, 106, 107
Index of stability. See Stability
Indexing. See Enhanced indexing; Passive strategy
Indicator-type events, number, 194
Individuals, preferences (von
Neumann-Morgenstern
characterization), 141
Inequality
change, 242
constraints, 340
defining, 53
implication, 119
satisfaction, 239
Infinite variance random variables. See Independent and identically distributed infinite variance random variables
Initial investment, size, 195

Integer-valued random variables. See Positive
integer-valued random variables
Integral calculus, 7
Integration range, 165
Interarrival times, 11
Interquartile range, 178-179
identification, 191n
Interval
probabilities, $176 f$
splitting, 114
standard normal density, $176 f$
Invariance, 201
property, 196-198
usage, 282
Invariance Principle, 104
Inverse c.d.f., properties (usage), 358
Inverse c.d.f.s., 67-68. See also Random variables
absolute differences, 80 f
plot, 81f
graph, 211f
area, closure, 233
plot, 68 f
terms, expression, 236-237
Inverse distribution functions. See
Conditional loss
comparison, 301-303
illustration, 298f, 299f
L_{p}-metrics, 80-82, 126
uniform metric
illustration, 80f usage, 79-80
Investments
opportunities, sets (distributional
properties), 18
returns, description, 129
Investors
preferences, 145-146
utility function consistency, 255 usage, 155
Ito processes, theory, 104

Joint distribution, 68-72
knowledge, 69
maximal metric, achievement, 71
Joint normal distribution, 312-313
hypothesis, 312
Joint probabilities
consideration, 86n
replacement, 309

Joint probability distributions, 17-30
definition, 19
JP Morgan, contribution, 182
k-th derivative, denotation, 166
Kahneman, Daniel, 140-141
Kantorovich distance, 95
Kantorovich metric, 78-79. See also
Weighted Kantorovich metric
definition, 126
usage, 226
illustration, 78 f
interpretation, 79
protominimal, 88
selection, 160
usage, 124-125
Karush-Kuhn-Tucker (KKI) conditions, 49 analytic method, 54-35
necessity, 53
reduction, 55
Karush-Kuhn-Tacker (KKT) theorem, 283
Kolmogorov metric, 76-77, 83
asymmet ic version, 311
backgreund, 119n
conyersion, 79
ciennition, 126
iillustration, 76 f
insensitivity, 77
maximum deviation, 77
obtaining, 96
selection, 159 f
Kolmogorov-Rachev metric, 136
Kolmogorov-Smirnov test, 194
Kolmogorov test, 194
Kurtosis, 14. See also Excess kurtosis;
Fisher's kurtosis; Pearson's kurtosis
Ky Fan distance, 97-98
Ky Fan metric, 85-86
parametric family, 97
$1_{1}(\mathrm{X}, \mathrm{Y})$ metric, 81-82
Lagrange, Joseph-Louis, 255n
Lagrange multipliers, 49-52
method, 50
gradient condition, 55
parameter, 255 n
real numbers, equivalence, 50
steps, 51-52
usage, 279
Lagrangian function, 51
Lapace distributions, 24
Law of Large Numbers, 17
usage, 103-104

Lebesgue spaces of functions, denotation, 241-242
Level curves, concept, 24 n
Leveraged portfolio, 341
Lévy, Paul, 104
work, 120n
Lévy alpha-stable distributions, 104
Lévy metric, 77-78. See also Parametrized Lévy metric
parametric extension, 96
Lévy stable, 120, 120n
distributions, tails (usage), 221
Liability-driven indexes, development, 317
Limit cases. See Relative deviation metric
Limit distribution. See Centered normal distribution; Generalized CLT
distance, estimation, 118-119
Limit relation, sums truth, 113
Limit theorems
appeal. See Probability
merits, 105
usefulness, 104
Limiting maxstable distribution, 104
Lindeberg-Feller, condition, 131
Linear function, surface, 57 f
Linear problems, 35
convex problem, reduction, 280
obtaining, 215-216
Linear programming, 49. See also
Two-dimensional linear progranmaing
Linear programming problems, 55-57
derivation, 329
identification, 261-262
restrictions, 352-353
Linear property, 162
Linear Technology Corp., stock, 301n
Linear utility function, 146
Linearized STARR (LSTARR), 328
Liquidity considerations, 247
Local dependence structure. See Multidimensional random variable
Local extrema, points, 38
Local maxima, 38
function, plot, 39 f
saddle point, 39 f
Local minima. See Convex functions
Local minimum, 36. See also Objective function
global tendencies, absence, 37
Location
invariance, 294-295
property, insufficiency, 298-299
parameter, 9, 121
mean, equivalence, 187
probability distribution function descriptor, 13
Location-scale invariance, 9. See also
Normal distribution
Logarithmic utility function, 146-147
graph, 153f
Logistic distributions, 24
London Interbank Offered Rate (LIBOR), percentage (change), 1
event, 2
Long-only portfolio, construction, 196-197
Loss
description, 218n
optimal solution, inverse distribution function, 303
distribution
assumption, 222
median, 213n
realization, 18
thresholds 79
Lottery. Se St. Petersburg Paradox
discassion, 143
indindual (preference), von
Neumann-Morgenstern numerical
representation, 143
interpretation. See von
Neumann-Morgenstern theory
Lower partial moment
selected order, 331
usage, 130-131
Lower partial moment of order, 129-130
Lower-range-dominated deviation measures, 198
Lower tail probability, 333
L_{p}-metrics. See Distribution function; Inverse distribution functions
extension, 95
LRR. See Reward-to-risk ratio
LSTARR. See Linearized STARR
Lyapunov's conditions, 104

M-R. See Mean-risk
M-V. See Mean-variance
MAD. See Mean absolute deviation
Mapping, notation, 295
Marginal distributions, 19-20
function, 27
Marginals, 27. See also Zero-mean normal marginals
Market
crashes, 124

portfolio, 256 location, 257 risky assets, 340
risk, 172-173 variables, 172-173
Mathematical tractability/convenience, gain, 5
MATLAB, usage, 235, 278, 280, 314
Matrix. See Nonsparse matrix; Sparse matrix determinant, denotation, 22
notation, usage, 187
Max-stable CLT, 61
Maxima. See Differentiable function; Local maxima
Maximal absolute difference, calculation, 66
Maximal copula, 32
Maximal distance, 70-71
explicit forms, 101
probability metric, 88
usage, 99-102
Maximal functionals, 100
Maximal metric
achievement. See Joint distribution
illustration, 89
obtaining, process, 89
usage, 72, 86-90
Maximal RR ratio portfolio, 321-322
Maximum expected return portfolio, 265-266
Mean absolute deviation (MAD), 86
identification, 176-177
nonnegative number, 177
Mean-deviation efficient frontir, tangent portfolio (relationship), 3 37f
Mean-deviation efficient 10 tfolio, containing, 273
Mean-deviation op mal portfolios, sub-optimal characteristic, 272-273
Mean-deviation plane, efficient portfolios, 271f
Mean-risk (M-R) analysis, 258-274
drawback, 268
principle, basis, 259
SSD, relationship, 266-267
Mean-risk (M-R) efficient frontier, 262-266
additions, 270
containing, 273
extension, 269-271
obtaining, 263-265
optimal portfolio coordinates, 272 f
portfolios, addition, 271f
shape, 264-266
Mean-risk (M-R) efficient portfolios, 336

Mean-risk (M-R) optimization problem, 259-262
M-V optimization problem, contrast, 260
Mean-risk (M-R) plane
efficient frontier, 264f, 270f
portfolios, plotting, 271-272
Mean-risk (M-R) problems, solutions, 279-281
Mean-shifted risk plane, 322
Mean-standard deviation plane, 256
Mean-variance (M-V) analysis, 245-246
drawback, 268
expected utility maximization problem, relationship, 277
inconsistency. See Second-order stochastic dominance
SSD, relationship, 254-256
usage, 247-258
Mean-variance (M-y) eficient frontier, 251-254
illustration, $257 \mathrm{f}^{\circ}$
plots, 252, 2531
set, chane, 256-257
Meâ-variance (M-V) optimization
problems, 49
contrast. See Mean-risk optimization problem
type, 342
usage, 247-251
Mean-variance (M-V) plane, efficient frontier, 253 f
Mean-variance ($\mathrm{M}-\mathrm{V}$) problems, solutions, 278-279
Means of something, 17
Median tail loss (MTL), 230
Medium-sized forward-looking tracking error, 290
Metrics. See Absolute moments metric; Engineer's metric; Kantorovich metric; Kolmogorov metric; Lévy metric; Smoothing metrics; Total variation metric; Uniform metric
construction, 68-69
function, notion, 90
indication, 128
selection, 93, 135
space, 90-91
example, 91
usage, 73
Microsoft Corp., stock, 262-263
funds, loss, 2
percentage change, 1
Minima. See Differentiable function

Minimal copula, 32
Minimal distances, 99-102
explicit forms, 101
mathematical proof, 99n
Minimal functionals, 100
Minimal metric, 70-71
definition, 88
illustration, 89
importance, 87
obtaining, process, 89
relationship, 71-72. See also Minimal metric; Simple metrics
usage, 72, 86-90
zero distance, obtaining, 71
Minimal r.d. metrics, 307-310
construction, 308-309
determination, 309
Minimal standard deviation, portfolio yield, 339
Minimal tracking error problem
form, 290
restatement, 291-292
usage. See Efficient frontier
Minimization formula. See Average VaR
appeal, 215
objective, 234-235
representation, 212
Minimum acceptable return level, 329
Minkowski inequality, 351
Modern portfolio theory (MPT), 246
Moment-based conditions, 241-242
summarization, 242
Moment of order, 15. See aiso Tails
calculation. See Discrete probability distributions
centering. See Cent red moment of order
Moments, 14. See cisc Sample moments; Second moment; Statistical moments; True moments
functions, 99-100
metric. See Absolute moments metric
rescaling. See Fourth central moment
Monetary loss, 171
Monotonicity, 201
property, 194-195
usage, 281
Monte Carlo method. See Portfolio AVaR; Portfolio VaR
artifact, 218
merits, 191-192
steps, 189
Monthly log-return, 114
Morgenstern, Oskar, 139

MPT. See Modern portfolio theory
MTL. See Median tail loss
Multidimensional random variable, local dependence structure, 29-30
Multivariate normal assumption, 216-217
Multivariate normal distribution, 21-23
covariance matrix, usage, 313
density function, representation, 22
example, 24
mean/covariance, specification, 254
random vector, joint distribution, 22
Multivariate probability distribution, function. See Random vector
Multivariate t-distribution, 24
n-dimensional random vector distribution function, emsideration, 31-32
elliptical distribu价处, 24
spherical distribution, 24
n-dimensional space, points/gradients, 38
n-dimensional vector space, 91
n-th order tochastic dominance, 157
$n \times n$ s.vnmetric matrix, 43
Negaive probabilities, implication, 7 n
Nesative semistandard deviation, definition, 177
Negative skewness, measurement, 13-14
Negatively skewed distribution, density graphs, 14f
95% confidence interval, calculation, 190t
95% VaR, equality, 211 f
99% AVaR. See Standard normal distribution
fluctuations, 219
99% VaR. See Standard normal distribution
boxplot diagrams, 191f
Non-Gaussian stable laws, 120 n
Non-random quantity, 282
Nonconvex quadratic function, 43
Nondecreasing property, 145-146
Nondegenerate limit, obtaining, 112
Nonlinear equality, 50
Nonnegative convex function, 100
Nonnegative portfolio weights, 48
Nonnegative third derivative, 152
Nonparametric method, 188
Nonquasiconcave performance measures, 356-357
Nonrandom monthly return, 184
Nonsatiable investors, 141, 145
preference, 148

representation, 146, 156 f
risk aversion, 156
Nonsatiable risk-averse investors
concern, 254
preference, 149-150
Nonsparse matrix, 280
Nonunique tangent portfolios. See Efficient frontier
Nonzero probability, 8
states, 70
Normal distribution, 8-10. See also
Multivariate normal distribution
adoption, 110
binomial approximation, 105-111
c.d.f., 110
class, 9
closed-form expressions, 213
covariance matrix, usage, 314
density, 109
explicit form, 313
location-scale invariance, 9
mean/variance, 110
probability density function. See
Two-dimensional normal distribution
summation stability, 10
usage, 213
variance, equivalence, 133
Normal distributions, distribution functions $159 f$
Normalized binomial c.d.f.s., 113 f
Normalized sum
denotation, 119, 133
distribution, convergence, 115,117
Normalizing, procedure. Seo Random variables
Normative theory, 141
Numerical integration. 235

Objective function, 35. See also Quadratic objective function
contour lines, 53
global minimum, 36
local minimum, 36-37
quadratic function, equivalence, 50
values, 51 f
variable, 48
One-dimensional distributions, fixed position, 89
One-dimensional function, minimization/maximization (relationship), 37f
One-dimensional probabilities, nonchange, 70

One-dimensional random variables, 73
One-sided variability ratio, 318
usage, 331-332
Operational risk, 172-173
Optimal portfolio, 35
appearance, 269
appendix, 274-285
bibliography, 285
classification, 273 f
compositions, 264f, 270f
generation, 273
introduction, 245-247
inverse distribution function, 302 f
position, indication, 253 f
problem. See Reward-dispersion optimal portfolio problem
benchmark-tracking type, 320
STARR, basis, 337
theory, 58
Optimal ratio problch, example, 350
Optimal RR ratio problem analysis, 355
benchmark return, 335
geometric reasoning, 336
Optimality, condition (providing), 52
Gp-1mization, 35. See also Constrained optimization; Unconstrained optimization
bibliography, 59-60
introduction, 35-36
solutions, statistical estimation-related problems, 288
theory, convexity (implication), 42
Optimization problems. See Mean-risk optimization problem
example, 249-250
r.d. metrics, involvement, 304
result, 261-262
simplification, 334-335
solution, 216
statement, 249-250
structure, simplification, 280
types, distinction, 48-49
Option contract, consideration, 2-3
Option payments, S\&P500 index value (impact), 3 t
Option pricing, binomial approach, 111
Oracle Corp., stock, 262-263, 301n
Order
absolute moment, 134
lower partial moment. See Lower partial moment of order
moment. See Moment of order

Order (Continued)
stochastic dominance relation, 163-164
Orlicz's condition, 95
Outcome, 2
joint probabilities. See Fair coins
subjective probabilities, 140
unions, 66
value, 65
Outperformance, tracking error treatment, 291
p-average compound metric, 85,98
minimal metrics, relationship, 87-88
p-average metric, 97, 126
p-tangent portfolio, 321
Parameters
formulae. See Continuous distribution; Discrete distribution
hat, symbol, 17 n
Parametric bootstrap, 191
Parametric model, assumption, 313-314
Parametrized Lévy metric, 96-97
Pareto distribution, 243
Pareto power-type decay, 120n
Partial derivatives, calculation, 52
Passive portfolio construction strategies, 225
Passive strategy (indexing), 287
Path-dependent derivatives, pricing, 111
Payoff
contrast. See Return
distributions
description, random variablus (usage), 238
quantile, 185
space, 156
level, 152
space, 156 f
utility, consideration, 142
Peakedness, measurement, 14
Pearson's kurtosis, 15
Pearson's skewness, 15
Percentage returns, construction, 182
Percentiles, 16
Performance
improvement, 327
level, absolute deviations, 130
Performance band, width (decrease), 86
Performance measures. See Nonquasiconcave performance measures; Quasiconcave
performance measures
appendix, 343-358
bibliography, 359
introduction, 217-218

Poisson approximation. See Approximation of Poisson
Poisson-distributed random variable, 4-5
Poisson distribution, 3, 4-5
relationship, 11
Polyhedral feasible set, surface, 57 f
Polyhedral set. See Unbounded polyhedral set formation, 56
Polyhedral set of feasible of points, 56
Portfolio. See Optimal portfolio
alpha, 288-289
equivalence, 289
assets, return, 345
AVaR calculation, 261
cash conversion, 128
c.d.f.s., 135
centered random return, 297-298
choice problem, 154
one-period problem, treatment, 247
common stocks, indusion, 186
composition
assumntion, 254
quantity, independence, 187-188
construction, 197
strategies. See Passive portfolio construction strategies
expected return, 186-187
investment decision, 248
loss, relationship, 310-311
managers, investment style, 139
maximal ratio, yield, 349
optimal ratio, yield, 346-347
outperformance/underperformance, minimization, 306-307
past performance, 319
processing, 192
profits, consideration, 154-155
random wealth, 294
realized monthly returns, example, 338
risk-free asset, inclusion, 256
standard deviation, 339
value, 195
decrease, 183
weights. See Nonnegative portfolio weights
convex function, 319-320
vector, 187
Portfolio AVaR, computation, 216-220
historical method, 217
hybrid method, 217-218
Monte Carlo method, 218-220
Portfolio returns, 184. See also Expected portfolio return

change, 293-294
consideration, 154-155
distribution, 191-192
distance, 225-226
joint distribution, 334
observation, 214n
standard deviation, 299
upper bound, 247
variance, 248-249
equivalence, 250
Portfolio risk
calculation, 189
estimation, 192
minimization, 171-172
upper bound, 259, 262
identification, 283
Portfolio selection theory, 18
elliptical distributions, properties, 23-24
Portfolio VaR, 185
computation, 186-192
historical method, 188
hybrid method, 188-189
Monte Carlo method, 189-192
RiskMetrics Group approach, 186-188
Positive homogeneity, 202
axiom, 202
consequence, 235-236
property, 195
implication, 196
usage, 282, 284
Positive homogeneity of degrees, 293-294
Positive integer-valued random variables, 67
Positive linear transform, 155 t
Positive random variable, 179
Positive semidefinite mat. ix. 44
Positive semistandard de viation, definition, 177
Positive shift, 284
property, replacement, 179
Positive skewness, measurement, 14
Positively skewed distribution, density graphs, 14f
Positivity, 284
Power utility function, 147
Preference order, representation, 162
Preference relation/order. See Economic agent
Primary distances, 95
Primary metrics, 62-63
category, 74-75
usage, 72-90
Primary r.d. metrics, 296
Probabilistic inequalities, 30-32

Probability. See Event; Nonzero probability
axiomatic framework, 305
basic concepts, 2
concepts, 1
bibliography, 33
convergence. See Real-valued random variables
differences, 78-79
distances, 91, 94
examples, 94-98
function. See Cumulative probability function
introduction, 1
perspective, 2 n
quantity, ratio, 11
quasidistance, 94
quasimetric, 94
quasisemidistance, 94
quasisemimetric, 0_{4}
semidistance, 94
semimetric, 91
space, consideration, 64
theory, limit theorems (appeal), 114-115
Probebility density function, 5-8. See also
Tho-dimensional normal distribution
invel lines. See Two-dimensional probability density function
plot, 22
possibility, 120n
probability distribution, mathematical connection, 8
providing, 6
Probability distribution. See Continuous probability distributions; Joint probability distributions
assumption, 184-185
c.d.f., 163
characterization, 8
function, 5-8
description, 13
skewness, distribution, 13
symmetry/asymmetry, 13-14
Probability metrics, 61, $73,94,118 n$
appendix, 90-102
application, 294n
axiomatic construction, 72, 73-74
remarks, 91-94
background, 119n
benchmark, relationship, 292-296
bibliography, 102
classes, identification, 61-62
classes, relationship, 86-87
consideration, 306-307

Probability metrics, 61, 73, 94, 118n
(Continued)
construction, 124-131
definition, 125-126
deviation measures, relationship, 201-205
dispersion measures, relationship, 180-181
equations, demonstration, 203, 204
examples, 126-131
ideal metric of order, 134
introduction, 61-62
measurements, 75-76
notion, 173
performance measures, relationship, 357-358
quantification, 158-159
relationship. See Risk measures
selection, 225
suitability, 160
stochastic dominance, relationship, 157-161
theory, 62, 87, 357
theory, application potential, 292-293
Prospect, domination, 141
Protominimal, 88. See also Kantorovich metric; Simple metric

Quadratic expected utilities, maximization, 255
Quadratic function, 43. See also Noncontex quadratic function
equivalence. See Objective furition
Quadratic objective function, 58
Quadratic problems, 35
Quadratic programming, 49°
explanation, 57-58
Quadratic progranming problems, 57-58
formulation, 278 n
identification, 278-279
optimization problem, equivalence, 339-340
Quadratic utility function, 146
description, accuracy, 246
set, denotation, 254-255
theoretic plausibility, 274 usage, 255
Quantiles, 13-17. See also Alpha quantile probability distribution function descriptor, 16
Quantitative element, addition, 158
Quasi-antitone functions, 100-101 verification, 101
Quasiconcave fractional program, 347-348

Quasiconcave performance measures, 345-353
Quasiconcave ratios, relationship. See Capital market line
Quasiconvex functions, 46-48 properties, 46-47
Quasidistance. See Probability
Quasimetrics, 91. See also Probability
Quasisemidistance. See Probability
Quasisemimetric. See Probability
consideration. See Birnbaum-Orlicz quasisemimetric
max function, usage, 306

R-R. See Reward-risk
R-ratio. See Rachev ratio
Rachev ideal metric, 129-131 concentration, 130
suitability, 160-10
Rachev metric. Soe Nolmogorov-Rachev metric
Rachev metric, ideal of order, 135-136
Rachev tatio (R-ratio), 318. See also
freneralized Rachev ratio
Global maximum, finding, 356
Lsage, 332-333
Random elements, 62
Random loss, description, 167
Random payoff, 194 interpretation, 183
Random percentage returns, 195
Random profit, VaR, 183
Random quantities, distance (measurement), 292
Random returns, 195
description, 183
Random variables. See Arbitrary random variable; Bernoulli-distributed random variable; Continuous random variable; Discrete probability distributions; Poisson-distributed random variable
behavior, 241-242
c.d.f., 237 f
c.d.f.s. plot, 159
centering, procedure, 112
confidence level, 183 f
consideration, 174
densities, 83-84, 167
dependence, 20, 87
dependencies, 308
description. See Common stocks;
Symmetric random variables
distance, 63

calculation, 69
distribution, 120n
function, 308
event, probability, 7 f
example. See Discrete random variables
finite moments, 75
function, coincidence, 65-66
independent distribution, 20
inequality, 298
infinite moments, 277
inverse c.d.f., 210
illustration, 237 f
mathematical definition, 1 n
normalizing, procedure, 112
objects, $73 n$
one-dimensional observations, 261
pair, joint distribution, 69-70
probability
convergence. See Real-valued random variables
distribution. See Single random variable
real-valued number, assignation, 194
second lower partial moment, 153
subspace. See Zero-mean random variables
sum, variance, 21
tails, 167
technical condition, 100
treatment, 86
uncorrelation. See Uncorrelated random variables
Random vector
joint distribution. See Multivariate normal distribution
multivariate probability dis ribution, function, 26
usage, 22
Rare events, 4 n
r.d. See Relative deviation

Real-valued number, assignation, 194
Real-valued random variables, 210
probability, convergence, 85
Rectangle area, geometric interpretation, 31
Regularity property, 126
financial interpretation, 126
Relative deviation (r.d.) metric, 288. See also
Minimal r.d. metrics
asymmetry, 312
computation, practice, 311-315
definition, 296
estimation, sample (usage), 313-315
examples, 296-300
explicit calculation, possibility, 299
functional, 297
identification, 292
limit cases, 310-311
relationship. See Deviation
simplification. See Empirical r.d. metric zero value, assumption, 298
Return
description, random variable (usage), 169
distributions
AVaR, 211f
description, random variables (usage), 238
payoff, contrast, 154-157, 164-166
portolio. See Maximum expected return portfolio
stochastic dominance, contrast, 164-166
Reward-deviation optimization problem, 285
Reward-dispersion optin.al portfolio problem, 283-281
Reward-dispersion ptimization problem, 2 285
Reward measure, 281
calculatıen, 319
uscoge, 345
Reraa-risk (R-R) analysis, 281-285
cpumal portfolio problem, 354
principles, formulation, 282
Reward-risk (R-R) efficient frontier, 283-284
Reward-risk (R-R) model, 247
Reward-to-risk (RR) ratio, 317-318
application, limitation, 324-325
efficient portfolios, relationship, 320-323
linearized form (LRR), 325
portfolio. See Maximal RR ratio portfolio
simplification, 319
usage, 318-333
Reward-to-variability (RV) ratio, 317
efficient portfolios, relationship, 335-337
Right-hand side inequalities, unification, 242n
Risk. See Shifted risk
aversion function, 231
aversion parameter, 255
calculation, 319
chances, 279
difference, 171
features, 172
measures coherence. See Coherent risk measures dispersion measures, contrast, 267-274
plane. See Mean-shifted risk plane
proxy, 246

Risk. See Shifted risk (Continued) spectrum, 222-223. See also Bounded risk spectra inverse, 243
uncertainty, synonym, 171-172
Risk, uncertainty (relationship), 171 bibliography, 205
introduction, 171-174
Risk-averse coefficiency, 325
Risk-averse investors, 141, 149
class, 150-151
portfolio preference, 266
preference, 158
prospect, preference, 151-152
representation, 156 f
Risk-averse portfolio manager, concentration avoidance, 275
Risk-aversion function, 222-223
choices, 224
examples, 223 f
graph, 223
inverse, 243
properties, 223
satisfaction, 241
Risk-aversion property, 152
Risk-free asset
addition, 256-258, 353-354
combination, 340
inclusion. See Portfolio
variance, zero level, 256
weight, 341
Risk-free rate
level, 197
vertical axis representation, 258
Risk management, convexiunctions (application), 40
Risk measures, 173 D ? also Coherent risk measures; Spectral risk measures
absence, 180
dispersion measures, relationship, 198-199
examples, 181
interpretation, 196
probability metrics, relationship, 224-227
stochastic orders, relationship, 199-200
usage, 79, 181-198
Risk-neutral investors, 146
Risk/return, optimal trade-off, 258-259
RiskMetrics Group, 182
approach, 190. See also Portfolio VaR
Risky assets
investment, 354-355
portfolio, 257
weight, expression, 341
Rothschild-Stiglitz dominance, 129
Rothschild-Stiglitz stochastic dominance (RSD), 150-151
concave order, equivalence, 150 n
order, quantification, 160
RR. See Reward-to-risk
RSD. See Rothschild-Stiglitz stochastic dominance
RV. See Reward-to-variability

Saddle point, 38. See also Local maxima
Sample moments, 16-17
calculation, 17 t
estimates, 16
Sample space, 2
Sand Technology, Inc., stock, 301n
Savage, Leonard, 1 +0
Scale parameter 9, 121
Scaled random ariables, 127 f
densities, 12
Scaled traci-ing error, 312-313
Scenario
qeneration, 189
I aR basis, 191
second
Second central moment, 14
Second derivatives, matrix, 39-40
Second lower partial moment. See Random variables
Second moment, 64
Second-order stochastic dominance (SSD), 141, 149-150
condition, 152-153
illustration, 151 f
consistency, 169, 266
example, 199
M-V analysis, inconsistency, 246
order, consistency, 200
relationship. See Mean-risk analysis; Mean-variance analysis
RR ratio, consistency, 325
TSD, relationship, 153
Second quartile, 16
Semidistance. See Probability
Semimetrics, 91. See also Probability
Semistandard deviation, 177-178
definition. See Negative semistandard deviation; Positive semistandard deviation
Set of feasible points, 35. See also Polyhedral set of feasible of points

boundary, 53-54
correspondence, 54f
identification, 48
Set of feasible portfolios, 293
Set of feasible solutions, 35
Shape parameter, 9
Sharpe ratio, 317
ex post analysis, 338
future performance, 339
introduction, 338
relationship. See Capital market line
usage, 337-340
Shifted risk, 322
Short-hand notation, usage, 109
Sigma-field (sigma-algebra), 2n
Simple distance, 95-97
Simple metrics, 62-63
category, 75-84
minimal metrics, relationship, 87-88
protominimals, 88
usage, 72-90
Simple probability distances, 99-100
Simple r.d. metrics, 296
Simplex method, 56
Single random variable, probability distribution, 18
Skewness, 13-14. See also Fisher's skewness
Pearson's skewness; Probability
measurement. See Negative skewness;
Positive skewness
parameter, 121
Small-sized forward-looking tracking error, 290
Smoothing metrics, 136
Smoothly truncated stabiedistributions,

$$
123-124
$$

Sortino ratio, 317
usage, 329-330
Sortino-Satchell ratio, 317-318
ex ante analysis, 331
ex post analysis, 330-331
maximization, 350-351
problem, 351-352
usage, 330-331
Space, average metric. See Distribution function
Sparse matrix, 280
Spectral risk measures, 222-224
absolute difference, 227
conditions, tail behavior (basis), 242-243
definition, 242
estimation, 224
examples, 227
remarks, 241-243
Spherical distribution. See n-dimensional
random vector
SSD. See Second-order stochastic dominance
St. Petersburg Paradox, 141-143
explanation, 142-143
lottery, 143t
Stability, index, 121
Stable distributions, 243. See also
Generalized CLT
AVaR, usage, 235-236
class, 10
properties, 121
usage. See Financial assets
Stable hypothesis, infinite variance, 123
Stable laws, density functions, 122 f
Stable Paretian, 120
distributions, 123
usage, 120 n
Stable tail-adjucted return ratio (STARR).

See Line rryed STARR

equivaleace, 326
extensions, 343-345
negative AVaR, impact, 327
problem, discussion, 352-353
reduction, impact, 327
usage, 325-329. See Average active return
Standard and Poor's 500 (S\&P500)
daily return, 16
observation, 193f
index, inverse distribution function, 302 f
illustration, 303 f
value, impact. See Option payments
Standard deviation
compound metric, 89
denotation, 21
equivalence, 175
measure, 174-176
obtaining, 13
scale parameter, 187
usage, 258-259
Standard normal density. See Interval
Standard normal distribution, 9
independent observations, 239
99\% AVaR, 219t
99\% VaR, 190t
STARR. See Stable tail-adjusted return ratio
Statistical dispersion, measure, 175
Statistical model
parameters, estimation, 189
selection, 189

Statistical moments, 13-17
probability distribution function descriptor, 14-16
Stochastic dominance, 147-157
contrast. See Return
order
assumption, 168
quantification, 159-160
relation, 141, 157, 166-169. See also Order
relationship. See Probability metrics
Stochastic independence, 20
Stochastic order, 161
interest, 168
M-V analysis, consistency, 255-256
relationship. See Risk measures
Stock portfolio
rebalancing, 77-78
return distribution description, random
variable (usage), 77
returns, description, 85
Stock price
daily log-returns, 118
log-return distribution, 122-123
Stocks
expected return, 251
returns, covariance matrix, 187
S\&P500 index placement, 262
Strategies performance, measurement (ex) post analysis), 318
Strict inequality, 55
Strictly expectation-bounded colerent risk measures, 198
Strictly expectation-boundod risk measures, 198
Student's t-distributic n, 11 12, 243
degrees of freedo $n, 208$
usage, 213-214
Sub-optimal portfolios, conclusion, 271-272
Subadditivity, 179
property, 196 implication, 196
Subclasses, relationship, 199
Subjectivity, appearance, 171
Sublevel sets, 42. See also Convex sublevel sets
Summands
i.i.d., characteristic, 117
independence, assumption, 115
large value, probability, 132
number, fixation, 118
positive value, 306-307
Summation stability. See Normal distribution

Sun Microsystems
stock, 262-263, 301n
weight, increase, 263
Superadditivity, 282
SYM. See Symmetry axiom
Symmetric deviation measures, 179-180
axioms, explanation, 203
degree 1, 296-297
family, 181
Symmetric random variables, description, 178n
Symmetry, 91
property, appearance, 299-300
range, 178n
Symmetry axiom (SYM), 73-74
breakage, Birnbaum-Orlics compound metric (usage), 307
dissatisfaction, 305
property, 125
usage, 92
T. Rowe Price Group Inc., stock, 301n
t-distributın. See Student's t-distribution der sitv function, 11-12
Ta 1 robability, 79. See also 40% tail probability; Lower tail probability; Upper tail probability
AVaR, 209-210, 221, 231 yield, 223
bounded capability, 226
continuous nonincreasing function, 324
ETL, 236
step function, 240-241
identification, 182-183
portfolio return, AVaR, 217
selection, 326
VaR, 224
Tails
concentration (probability distribution
function descriptor), 13, 14
distribution, heaviness, 121
exponent, 121
fatness, measurement, 14
moment of order, 228
moments, application, 229-230
structure, 221
thickness, 209f
truncation method, 123-124
variance. See Conditional distribution
Tangency portfolio, 257
Tangent line, 321
horizontality, 323

Tangent portfolio
obtaining, 337 f
relationship. See Efficient frontier;
Mean-deviation efficient frontier
Tangential contour line, 50. See also Feasible set
Technical continuity conditions, 163
preference order, 144
Theory of Games and Economic Behavior (von Neumann/Morgenstern), 139
Third central moment, rescaling, 14
Third-order stochastic dominance (TSD), 141
usage, 152-153
Third quartile, 16
Three-dimensional random vector, 93
Topological structure, 291n
Tosses (number), heads occurrence (probabilities), 109f
Total sum variability (description), standard deviation (usage), 132
Total variation metric, 83-84
definition, 136
expression, 128
probabilities, maximum absolute difference, 84
usage, 124-125
Tracking error. See Scaled tracking error
identification, 289
optimal solution, 300-301
positive value, 300
problem, 288-292
providing, mean-variance pralysis (usage), 287
reduction, 225
zero value, 300
Transitivity, 162
axiom, 162
Translation invariance, 179, 202
axioms, 180, 202
identification, 196
Translation invariant functional, 294
Translation invariant probability metric, 296-297
Translation invariant probability semimetric, 296-297
Translation invariant r.d. metrics, class, 297
Triangle inequality, 91
abstract version, 74
holding, 99
parameter K, inclusion, 92
property, 125
relaxation, 94-95

True moments, 16
True parameter, estimation, 17 n
TSD. See Third-order stochastic dominance
Tversky, Amos, 140-141
Two-average compound metric, 89
Two-dimensional convex quadratic function
convex quadratic constraint, 54 f
objective function, 53
surface, 44f, 54f
contour lines, 44 f
Two-dimensional density function, contour lines, 23
Two-dimensional linear programming, problem, 56
Two-dimensional normal distribution
copula density, 28 f
Two-dimensional normal distribution, probability density unction, 23 f
Two-dimensional optmzation problem, consideration, 52
Two-dimensional robability density function leve 1 lines, 24 f
Two-dimersional projections, 93-94
Two-dimensional quadratic objective finction, surface, 51f
Trio dimensional quasiconvex function
contour lines, 47 f
example, 47 f
Two-dimensional random variable, distribution function, 100
Two-fund separation theorem, 340
Unbiased estimator, 338
Unbounded polyhedral set, 56
Uncertainty
features, description, 198
impact. See Choice; Decision making
measure, example, 172, 176
synonym. See Risk
Unconstrained optimization, 36-48
first-order condition, solution, 52
Unconstrained problems, notation, 48
Uncorrelated random variables, 21
Underlying instrument, 111
Underperformance, tracking error treatment, 291
Unfair coins, independent toss, 110
Uniform metric, 76
illustration. See Inverse distribution functions
usage, 124-125. See also Densities; Distribution function
Unit hypercube, 28

Univariate distribution, 18
Upper tail probability, 333 quantile, 344
Upside dispersion measure, 177-178
Utility function, 139. See also Concave utility function
derivatives, properties (imposition), 163-164
quadratic approximations, 276-277
set, 163
shape, 145-146
Taylor series approximation, 276-277
types, 145-147
usage, 148
Utility theory. See Expected utility theory appeal, 141

Value-at-Risk (VaR). See Common stocks; Random profit; Standard normal distribution
absolute differences, sum, 81
absolute value, 80
average, 210
backtesting, 192-194
statistical test, basis, 194
calculation, 79
computation, 190
consideration, 181-182
deviations, aggregate information, 81
differences, 184
disadvantage, 208-209
estimation, 223-224
methods, 173
examples, 226
levels, 80
measure, 182
adoption, 20\%
computation, 189
measurement, 16
negative, 193f
properties, 173
usage, 182-186
weighted average, consideration, 222

Value distribution. See Extreme value distribution; Generalized extreme value distribution
Value function, introduction, 140-141
VaR. See Value-at-Risk
Variables. See Random variables
log-returns, 114-115
summation, meaning. See Financial variables
Variance
calculation, 64
example, 172
Variance-covariance matrix, 25
Vector notation, usage, 22
Ventures, c.d.f., 148
Volatility, 77
clustering, 192
von Neumann, John, 139
von Neumann-Morgenseern theory basis, 161
lotteries, inte pietation, 164-165
publication, 42
von Neun ana-Morgenstern utility theory, 143-45

Veakly regular functional, 294
Weibull-type extreme value distribution, 12
Weighted Kantorovich metric, 227
Whiskers, 191n
diagram. See Box-and-whiskers diagram

Yield curve, shape, 73
daily movement, 292
Zero gradient, 38
points, 38-39
Zero-mean normal marginals, 89
Zero-mean random variables consideration, 298
subspace, 295 n
Zolotarev ideal metric, 128-129

