Contents

Preface

- Preface xiii

List of Acronyms

- List of Acronyms xv

1 Related Work and Preliminary Considerations

- 1.1 Introduction 1
- 1.2 Related Work 2
 - 1.2.1 A Routing-Based Approach 2
 - 1.2.2 An Information-Theoretic Approach 3
 - 1.2.3 A Dynamic Control Approach 4
 - 1.2.4 A Game-Theoretic Approach 4
- 1.3 A New Perspective for the Design of Ad Hoc Wireless Networks 5
- 1.4 Overview of the Underlying Assumptions in the Following Chapters 9
- 1.5 The Main Philosophy Behind the Book 11

2 A Communication-Theoretic Framework for Multi-hop Ad Hoc Wireless Networks: Ideal Scenario

- 2.1 Introduction 15
- 2.2 Preliminaries 16
 - 2.2.1 Topology 16
 - 2.2.2 Route Discovery 17
 - 2.2.3 Average Number of Hops 18
- 2.3 Communication-Theoretic Basics 18
 - 2.3.1 Bit Error Rate at the End of a Multi-hop Route 18
 - 2.3.2 Link Signal-to-Noise Ratio 20
- 2.4 BER Performance Analysis 23
 - 2.4.1 Uncoded Transmission 23
 - 2.4.2 Coded Transmission 27
- 2.5 Network Behavior 29
 - 2.5.1 Minimum Spatial Energy Density and Minimum Transmit Power for Full Connectivity 30
 - 2.5.2 Connectivity: Average Sustainable Number of Hops 34
 - 2.5.3 Lifetime of a Node 40
- 2.6 Concluding Remarks 41
3 A Communication-Theoretic Framework for Multi-hop Ad Hoc Wireless Networks: Realistic Scenario

3.1 Introduction ... 43
3.2 Preliminaries .. 44
3.3 Communication-Theoretic Basics 46
3.4 Inter-node Interference 48
 3.4.1 Geometric Considerations 48
 3.4.2 Traffic Model 49
3.5 RESGO MAC Protocol 50
 3.5.1 Scenario with Strong LOS and Interference from Nodes in Tier 1 50
 3.5.2 Scenario with Strong LOS and Interference from Nodes in Tiers 1 and 2 .57
 3.5.3 Scenario with Strong Multipath (Rayleigh Fading) 58
 3.5.4 Discussion 63
3.6 RESLIGO MAC Protocol 64
 3.6.1 Scenario with Strong LOS 66
 3.6.2 Scenario with Strong Multipath (Rayleigh Fading) 69
 3.6.3 Discussion 72
3.7 Network Behavior 73
 3.7.1 Minimum Spatial Energy Density and Minimum Transmit Power for Full Connectivity 73
 3.7.2 Scenario with Strong LOS 73
 3.7.3 Scenario with Strong Multipath (Rayleigh Fading) 75
 3.7.4 Connectivity: Average Sustainable Number of Hops 78
3.8 Conclusions .. 83

4 Connectivity in Ad Hoc Wireless Networks: A Physical Layer Perspective 85

4.1 Introduction ... 85
4.2 Quasi-regular Topology 86
 4.2.1 A Formal Definition of Quasi-regular Topology 87
 4.2.2 A Communication-Theoretic Approach 88
 4.2.3 What Happens if Each Node has Two Spatial Neighbors? 93
 4.2.4 What Happens if There is Inter-node Interference? 96
4.3 Random Topology 100
 4.3.1 Related Work 100
 4.3.2 Connectivity in Ad Hoc Wireless Networks with Random Topology 102
 4.3.3 Evaluation of the Likelihood of Broadcast Percolation 104
 4.3.4 What Happens if There is Inter-node Interference? 108
4.4 Concluding Remarks and Discussion 109

5 Effective Transport Capacity in Ad Hoc Wireless Networks 111

5.1 Introduction ... 111
5.2 Model and Assumptions 113
5.3 Preliminaries .. 115
 5.3.1 Route Bit Error Rate 115
 5.3.2 Link Signal-to-Noise Ratio 115
 5.3.3 Average Sustainable Number of Hops 117
5.4 Single-Route Effective Transport Capacity 117
7.6.5 Effects of Mobility ..191
7.6.6 Implications on Practical Scenarios192
7.7 Concluding Remarks ..193

8 Optimal Common Transmit Power for Ad Hoc Wireless Networks 195
8.1 Introduction ...195
8.2 Model and Assumptions ...196
 8.2.1 Network Topology ..196
 8.2.2 Routing ..197
 8.2.3 Medium Access Control Protocol199
8.3 Connectivity ..199
 8.3.1 Square Grid Topology200
 8.3.2 Two-Dimensional Poisson Topology201
8.4 BER at the End of a Multi-hop Route202
 8.4.1 Square Grid Topology202
 8.4.2 Random Topology ...204
8.5 Optimal Common Transmit Power204
 8.5.1 Optimal Common Transmit Power for Networks with Square Grid
 Topology ..204
 8.5.2 Optimal Common Transmit Power for Networks with Random
 Topology ..205
8.6 Performance Metrics ...205
 8.6.1 Node and Network Lifetime205
 8.6.2 Effective Transport Capacity206
8.7 Results and Discussion208
 8.7.1 Optimal Transmit Power and Data Rate208
 8.7.2 Optimal Transmit Power and Node Spatial Density210
 8.7.3 Effects of Strong Propagation Path Loss211
 8.7.4 Connectivity Robustness to Node Spatial Density Changes .213
 8.7.5 Practical Determination of the Optimal Transmit Power215
8.8 Related Work ..216
8.9 Conclusions ...217

9 The Routing Problem in Ad Hoc Wireless Networks: A Cross-Layer
 Perspective ..219
9.1 Introduction ..219
9.2 Experimental Evidence ..220
9.3 Preliminaries: Analytical Models and Assumptions221
 9.3.1 Physical Layer ...221
 9.3.2 Medium Access Control225
 9.3.3 Basic Networking Assumptions226
9.4 Route Selection: Simulation Study227
 9.4.1 Network Topology ..227
 9.4.2 BER-Based Routing versus Shortest-Path Routing227
9.5 Network Performance Evaluation235
 9.5.1 Average Hop Length Models235
 9.5.2 Retransmission Model239
9.5.3 Packet Error Rate .. 239
9.5.4 Delay ... 240
9.6 Discussion ... 243
9.6.1 Cross-layer Routing: A Practical Perspective 243
9.6.2 Mobility ... 246
9.7 Related Work .. 246
9.8 Conclusions .. 248

10 Concluding Remarks .. 249
10.1 Introduction .. 249
10.2 Extensions of the Theoretical Framework: Open Problems 249
10.2.1 Performance of Ad Hoc Wireless Networks: Random Versus Uniform Topologies .. 249
10.2.2 Impact of Clustering on the BER Performance in Ad Hoc Wireless Networks ... 251
10.2.3 Impact of Receiver Sensitivity on the Performance of Ad Hoc Wireless Networks ... 253
10.2.4 Spectral Efficiency–Connectivity Tradeoff in Ad Hoc Wireless Networks ... 254
10.2.5 MIMO-OFDM Wireless Communications 256
10.2.6 Smart Antennas and Directional Antennas 256
10.3 Network Architectures ... 256
10.4 Network Application Architectures 257
10.5 Standards ... 258
10.6 Applications ... 263
10.7 Conclusions ... 264

Appendix A Analysis of the Inter-node Interference 265
A.1 Introduction .. 265
A.2 Exact Computation of the Average Link BER in a Scenario with Strong LOS .. 265
A.2.1 Interference from Nodes in Tier 1 266
A.2.2 Interference from Nodes in Tiers 1 and 2 271
A.2.3 Interference from Nodes in Tier 2 273
A.2.4 Simulation Scenario ... 274
A.3 Exact Computation of the Average Link BER in a Scenario with Strong Multipath (Rayleigh Fading) 276
A.3.1 Interference from Nodes in Tier 1 277
A.3.2 Interference from Nodes in Tiers 1 and 2 278
A.3.3 Interference from Nodes in Tiers 1, 2 and 3 278
A.4 LOS and Multipath (Rice Fading) 280
A.5 Gaussian Assumption for the Interference Noise 280
A.5.1 Route Bit Error Rate ... 282
A.5.2 Interference Power .. 284

Appendix B Proof of Theorem 1, Chapter 5 287

Appendix C Route Discovery .. 293
Appendix D Validation of Analytical Results 295
 D.1 Validation of Network Goodput 295
 D.2 Validation of Delay 295
 D.3 Validation of Average Number of Simultaneously Active Routes 297

Appendix E Derivation of Joint CDF of W and Φ 299

References 307

Index 327