ANSWERS

CHAPTER 1 (Introduction to Management Accounting)

Work Them Out

1. C	2. C	3. B	4. B	5. D	6. A	7.A	8. A	9. A	10. D

Short Questions

1. Resources like materials and labour are scarce and costly. Cost accounting measures these resources and management accounting analyses the data, determines the cost behaviour and makes decisions on the reallocation and efficient use of the resources.
2. - Prices of products

- The number of products to produce
- The number of people to hire
- Cost of a particular product
- Whether it is wise to open or close a particular retail branch
- Whether the expense incurred by a department exceeds the original planned amount
- Whether the revenue generated by a product meets the original planned amount
- Expected profit for the following year

Long Question

1.

Financial Accounting	Management Accounting
Provide information to external users	Provide information to internal users
Mandatory reporting	Optional reporting
Based on entire business	Based on segment
Follow accounting standards	No need to follow accounting standaids

Cost accounting provides cost information of goods for the managerr?nt to make business decisions.

CHAPTER 2 (Cost Classification, Concepts and Terminology)

Work Them Out

1. A	2. B	3. B	4. C	5. D	$6 . \mathrm{D}$	D	8. C	9. A	10. B

Short Questions

1. Avoidable costs may be saved upon cho ee but unavoidable costs may not. During low seasons, the management in a restaurant may hire fewer part-time siatt or switch off the air-conditioning in some areas. In these circumstances, the labour cost and electricity cost are avoidable. During hot summer months, air-conditioning is an unavoidable cost in the restaurant business.

Avoidable costs are relevant when making a decision on whether to accept an order. For example, when the expected income of a proposed order cannot cover the processing cost, the cost is relevant if it is avoidable; it saves money if not accepting the order. However, if the cost is unavoidable, it becomes not relevant for decision because it has already been incurred.

Unavoidable costs are more common when they play the role of sunk costs. Sunk costs have already been established by a past decision. If the decision remains valid, the costs become unavoidable and irrelevant to a present decision. For example, the rental cost that has already been agreed on and paid is a sunk cost. If a shop decides to reduce the floor area, the same rental cost is incurred.
2.
(a) Manufacturing overheads
(b) Selling expenses
(c) Administrative expenses
(d) Direct labour
(e) Direct material
product cost, e.g. indirect cost of wages to inventory store period cost, e.g. advertising cost with no certainty of effect period cost, e.g. salary of financial accountant who deals with the whole company product cost, e.g. wages of assembly line worker product cost, e.g. paper for book printing

Long Questions

1.

(a) Total fixed costs remain constant.
(b) Total variable costs will increase.
(c) Unit fixed costs will decrease.
(d) Unit variable costs will remain constant.
2. Variable cost $=\$ 12 \times 860=\$ 10,320$

Fixed costs $\quad \$ 4,300$
Total costs $\$ 14,620$
Average costs $=\$ 14,620 / 860=\$ 17$

CHAPTER 3 (Costing for Materials)

Work Them Out

1.B	2.D	3.A	4.D	5. B	6. B	7.C	8. B	9. C	10. B

Short Questions

1.

(a) $E O Q=($ Square root of $) \downarrow\{(2 \times(104,000 / 25) \times \$ 94.50) /(\$ 5 \times 25 \times 15 \%)\}=204.8$
(b) Reorder point $=104,000 / 25 \times 7 / 365$ days $=79.8$ packs
2.

FIFO							
	Receipts			Issues			
Date	Units	Cost Per Unit	Value	Units	Cost Per Unit	value	$\underline{\text { Units }}$
		\$	\$		\$	\$	
Begin	50	150	7,500				50
31 Mar	50	155	7,750				50
Q1							50
					155	1,550	40
30 Jun	55	160	8,800				40
				${ }^{\circ}$			55
Q2					155	6,200	
				30	160	4,800	25
30 Sep	60	170	10,200				25
							60
Q3				25	160	4,000	
				30	170	5,100	30
15 Dec	55	115	9,625				30
							55
Q4				30	170	5,100	
				30	175	5,250	25
				of goo	ds issued	\$39,500	

Balance	
Cost Per Unit	Value
\$	\$
150	7,500
150	7,500
155	7,750
155	6,200
155	6,200
160	8,800
160	4,000
160	4,000
170	10,200
170	5,100
170	5,100
175	9,625
175	4,375
End. Inv.	\$4,37

LIFO

Date	Receipts			Issues			Balance		
	Units	Cost Per Unit	Value	Units	Cost Per Unit	Value	Units	Cost Per Unit	Value
		\$	\$		\$	\$		\$	\$
Begin	50	150	7,500				50	150	7,500
31 Mar	50	155	7,750				50	150	7,500
							50	155	7,750
Q1				50	155	7,750			
				10	150	1,500	40	150	6,000
30 Jun	55	160	8,800				40	150	6,000
							55	160	8,800
Q2				55	160	8,800			
				15	150	2,250	25	150	3,750
30 Sep	60	170	10,200				25	150	3,750
							60	170	10,200
Q3				55	170	9,350	25	150	3,750
							5	170	850
15 Dec	55	175	9,625				25	150	3,750

Long Questions

1.

(a) (i) FIFO:

Date	Units	Receipts Cost Per Unit	Value	Uhits	Issues Cost Per Unit	Value	Units	Balance Cost Per Unit	Value
		\$	\$		\$	\$		\$	\$
July	850	5	4,250	- 400	5	2,000	450	5	2,250
August				300	5	1,500	150	5	750
September	600	6	060				150	5	750
							600	6	3,600
October				150	5	750			
				250	6	1,500	350	6	2,100
November	200	7	1,400				350	6	2,100
							200	7	1,400
December				200	6	1,200	150	6	900
							200	7	1,400
			9,250			6,950			

(ii) LIFO:

Date	Receipts			Issues			Balance		
		\$	\$		\$	\$		\$	\$
July	850	5	4,250	400	5	2,000	450	5	2,250
August				300	5	1,500	150	5	750
September	600	6	3,600				150	5	750
							600	6	3,600
October				400	6	2,400	150	5	750
							200	6	1,200
November	200	7	1,400				150	5	750
							200	6	1,200
							200	7	1,400
December				200	7	1,400	150	5	750
							200	6	1,200
			9,250			7,300			

(iii) Weighted average:

Date	Units	Receipts Cost Per Unit	Value	Units	Issues Cost Per Unit	Value	Units	Balance Cost Per Unit	Value
		\$	\$		\$	\$		\$	\$
July	850	5	4,250	400	5	2,000	450	5	2,250
August				300	5	1,500	150	5	750
September	600	6	3,600				750	5.80	4,350
October				400	5.80	2,320	350	5.80	2,030
November	200	7	1,400				550	6.24	3,430
December				200	6.24	1,248	350	6.24	2,182
			9,250			7,068			

(b) FIFO:

Sales	$\$ \mathbf{\$}$
July	3,200
August	2,700
September	0
October	4,200
November	0
December	2,400
	12,500
Less: COGS	6,950
Gross profit	5,550

LIFO:	
Sales	$\$$
July	3,200
August	2,700
September	0
October	4,200
November	0
December	2,400
	12,500
Less: COGS	7,300
Gross profit	5,200

Weighted average:	
Sales	$\$$
July	3,200
August	2,700
September	0
October	4,200
November	0
December	2,400
	12,500
Less: COGS	7,068
Gross profit	5,432

2.

(a) (i) Annual costs of ordering and carrying inventory:

(1)	(2)	(3)	$(4)=(1) / 2$	$(5)=(4) \times \$ 2$	$(6)=(3)+(5)$
Order Quantity	No. Of	Annual	Average	Annual Carrying	Total
(Units)	Orders Per Year	Ordering	Inventory	Costs	(\$)
		Costs (\$)	(Units)	(\$)	
5,000	100	20,000	2,500	5,000	25,000
10,000	50	10,000	5,000	10,000	20,000
50,000	10	2,000	25,000	50,000	52,000
100,000	5	1,000	50,000	100,000	101,000

Based on the calculations on the previous page, the best order quantity is 10,000 units per order, in which the total annual costs of ordering and carrying inventory is the lowest.
(ii) Economic order quantity (EOQ):

$$
\begin{aligned}
& \sqrt{\frac{2 \times 500,000 \times \$ 50}{\$ 20 \times 10 \%}} \\
& =5,000 \text { units }
\end{aligned}
$$

(b) Cost of goods sold and closing inventory:

Method	Cost Of Goods Sold	Closing Inventory
FIFO	4,000 \times \$8 = \$32,000	$2,000 \times \$ 10=\$ 20,000$
	6,000 \times \$10 $=\$ 60,000$	$3,000 \times \$ 12=\$ 36,000$
	\$92,000	\$56,000
LIFO	2,000 \times \$8 $=$ \$16,000	2,000 \times \$8 $=$ \$16,000
	$8,000 \times \$ 10=\$ 80,000$	$3,000 \times \$ 12=\$ 36,000$
	\$96,000	\$52,000
Weighted	10,000 \times \$9.3333 $=\underline{\$ 93,333}$	2,000 \times \$9.3333 $=$ \$18,667
average	$(4,000 \times \$ 8+8,000 \times \$ 10) / 12,000=$	$3,000 \times \$ 12=\$ 36,000$
cost	\$9.3333	\$54,667

CHAPTER 4 (Costing for Labour)

Work Them Out

1. B	2. D	3. C	4. B	5. C	$6 . \mathrm{D}$	7.A	8. C	9. B	10. 4

Short Questions

1. Characteristics of a good incentive scheme:

- fair
- easy to understand
- flexible
- low implementation expense
- acceptance by both workers and employers
- staff satisfaction
- compliance with legal requirements and traaəagreements
- stability (not changed frequently)

2.

Remuneration

Time basis

Piece work basis

Advantages

Simple to manage and avoids arguments
Attention on quality of output
Meeting the needs of special job orders

Incentive and fair remuneration to efficient workers and overall efficiency will improve No payment for idle time

Disadvantages

No incentive for efficient workers

Higher cost of production when more than average time is spent

Quality may decline, resulting in cost of rectification

Over workload may cause illness and accidents at work
3.
(a) Wages per day for 800 units $=\$ 200$

Bonus for extra output $(1,000-800) \times(20 / 100)=\$ 40$
Total wages $=\$ 240$
(b) Piece work for 1,000 units $(1,000 / 800 \times 200)=\$ 250$

Long Questions

1.

(a) Labour turnover is defined as the ratio of the number of workers leaving an organisation during a period as related to the number of workers employed.

Labour turnover ratio:

> No. of workers who leave and require replacement during a period
> Average number of workers employed during the same period
(b) Prevention costs are those costs that on being incurred can prevent the workers from leaving.

Cost of providing:
(i) better fringe benefits
(ii) better wage rate
(iii) better working conditions and safety measures
(iv) promotion and training
(c) Replacement costs refer to the costs that have to be incurred in connection with replacing workers who have left.

Cost of:
(i) recruitment and training of new workers
(ii) production rejection due to new workers' lack of experience
(iii) repair of production equipment damaged
(iv) compensation for workers because of accidents
2.
(a)

	Billy	George
Time allowed (hour), $(1,440 / 12) \times(30 / 60) ;(960 / 12) \times 1$	60	80
Time taken (hour)	54	60
Bonus hour	6	20
Bonus earned $(6 \times 40) \times(2 / 3) ;(20 \times 60) \times(2 / 3)$	$\$ 160$	$\$ 800$

(b)

	Billy	George
Basic wages $(54 \times 40) ;(60 \times 60)$	$\$ 2,160$	$\$ 3,600$
Overtime premium $(54-48) \times 40 \times(1 / 3) ;(6 \times 60 \times 1 / 3)+(3 \times 60 \times 1 / 2)$	$\$ 80$	$\$ 300$
Bonus earned	$\$ 160$	$\$ 800$
Gross wages	$\$ 2,400$	$\$ 4,700$

(c) Wages cost per dozen:

Billy: $2,400 /(1,440-400) \times 12=\$ 27,6 ?$
George: $4,700 /(960-50) \times 12=\$ 6: .98$

CHAPTER 5 (Overhead Cost:)

Work Them Out

1. C^{*}	2. B^{*}	3. A^{*}	4. C^{*}	5. D	6. B	7. A	8. B	9. A	10. C

* Working: $1: 18+10+4=32$
$2:(18+10+4)+(264,000 / 8,800)=62$
3: $8,700 \times(78-32-5)=356,700 ; 356,700-255,200-87,000=14,500$
4: $(8,800-8,700) \times 62=6,200 ; 14,500+100 \times(62-32)=17,500$

Short Questions

1. Production overheads are absorbed on a labour hour basis:

Total labour hours in the period:

Product $X(\$ 30 / \$ 20 \times 120)$	180
Product $Y(\$ 20 / \$ 20 \times 180)$	180
Product $Z(\$ 40 / \$ 20 \times 210)$	$\underline{420}$
	$\underline{780}$
Production overhead absorption rate:	

$\$(20,740+5,950+9,000+11,110) / 780=\$ 60$ per labour hour

Unit selling price:			
	X	Y	Z
Per unit:	\$	\$	\$
Direct materials	28	48	16
Direct labour	30	$\underline{20}$	40
Prime costs	58	68	56
Production overheads (\$60 per labour hour)	$\underline{90}$	60	120
Production costs	148	128	176
Mark-up (20\%)	29.60	25.60	35.20
Selling price	$\underline{\underline{177.60}}$	$\underline{153.60}$	$\underline{\underline{211.20}}$

2. Production overhead absorption rate:

$$
\$(560,000+600,000+50,000+70,000) /(6,000+2,000)=\$ 160 \text { per machine hour }
$$

Using machine hours as absorption basis:

	P1	P2
Per unit:	$\$$	$\$$
Direct costs	220	200
Production overheads		
$\$ 160 \times(6,000 / 2,000)$	$\underline{480}$	
$\$ 160 \times(2,000 / 2,500)$	$\underline{700}$	$\underline{128}$
Production cost	$\underline{328}$	

Long Questions

1.

(a) Budgeted overhead absorption rates:

	Basis Of Apportionment	Production Cost Centre		Service Cost Centres		Total
		Cutting	Assemhiy	Stores	Maintenance	
		\$'000	3000	\$'000	\$'000	\$'000
Indirect material	Floor area Gross book value of machine	1,000	800	400	600	2,800
Indirect labour		200	1,300	300	500	2,300
Electricity		$\begin{aligned} & 552 \\ & 600 \end{aligned}$	$\begin{aligned} & 188 \\ & 650 \end{aligned}$	140	120	1,000
Factory rent and rates				200	50	1,500
Machine insurance		250	200	20	30	500
Staff welfare	Number of employees	$\frac{300}{2,902}$	800	$\frac{40}{1,100}$	$\frac{60}{1,360}$	$\frac{1,200}{9,300}$
Apportion maintenance			3,938408			
		816		1,236	$(1,360)$	
Apportion stores		618	371	$(1,236)$	247	
Apportion maintenance		148	74	25	(247)	
Apportion stores		13	7	(25)	5	
Apportion maintenance		$\underline{3}$	$\underline{2}$	$\underline{0}$	(5)	
Budgeted overhead		4,500	4,800	0	0	
\div Machine hours		600,000				
- Direct labour hours			800,000			
Budgeted overhead rates		$\$ 7.50$ per machine hour	$\$ 6$ per direct			
			labour hour			

(b) Quoted price:

	$\$$
Direct materials	330,000
Direct labour	240,000
Production overhead:	450,000
Cutting cost centre $(\$ 7.50 \times 60,000)$	$\underline{180,000}$
Assembly cost centre $(\$ 6 \times 30,000)$	$1,200,000$
Production costs	$\underline{400,000}$
Profit margin (25%)	$\underline{1,600,000}$
Quoted price (100%)	

(c) Under- or over-absorption of overheads:

Cutting

Overheads absorbed
Overheads incurred

Over/(Under)-absorption

$\$ 7.5 \times 500,000$

 $=\$ 3,750,000$\$3,500,000
\$250,000

Assembly
$\$ 6 \times 900,000$ $=\$ 5,400,000$
$\$ 5,600,000$
(\$200,000)
2.
(a) (i) Using absorption costing system:

Budgeted operating statement for the year ended 31 December

	2010	2011
	\$'000	\$'000
Sales (40,000 x 400; 70,000 x 400)	16,000	28,000
Less: Production costs of sales		
Opening inventory	-	2,200
Add: Variable production costs (W1)	10,000	12,000
Fixed production overhead costs (1,000 $=50,000 \times 20)$	1,000	1,200
	11,000	15,400
Less: Closing inventory [(50,000-40,000) x $(200+20)$]	2,200	-
	8,800	15,400
Under/(Over)-absorbed fixed production costs ($80=4,000 \times 20$)	$\underline{80}$	(120)
	8,880	15,280
Gross profit	7,120	12,720
Less: Variable non-production overhead costs (W2)	400	700
Fixed non-production overhead costs	2,000	2,000
	2,400	2,700
Net profit	$\underline{4,720}$	$\underline{10,020}$

(ii) Using marginal costing system:

Budgeted operating statement for the year ended 31 December

,	2010	2011
	\$'000	\$'000
Sales	16,000	28,000
Less: Variable produc 'ion costs of sales		
Opening inventory	-	2,000
Add: Variable production costs (W1)	10,000	12,000
	10,000	14,000
Less: Closing inventory [(50,000-40,000) x 200]	2,000	-
	8,000	14,000
Variable non-production overhead costs (W2)	400	700
	8,400	14,700
Contribution	7,600	13,300
Less: Fixed production overhead costs	1,080	1,080
Fixed non-production overhead costs	2,000	2,000
	3,080	3,080
Net profit	$\underline{4,520}$	$\underline{\underline{10,220}}$
Working:		
(W1) 2010: $\$(50+120+30) \times 50,000=\$ 10,000,000$		
2011: $\$(50+120+30) \times 60,000=\$ 12,000,000$		
(W2) 2010: $\$ 10 \times 40,000=\$ 400,000$		
2011: $\$ 10 \times 70,000=\$ 700,000$		

(b) Reconciliation of the budgeted profits for 2010 and 2011:

2010	$\mathbf{2 0 1 1}$
$\$ \prime 000$	$\$, 000$
4,720	10,020
(200)	-
-	$\underline{10, \underline{200}}$
$\underline{4,520}$	

(c) Over-absorption means that the overheads charged to the cost of sales are greater than the overheads actually incurred. Under-absorption means the overheads charged to the cost of sales are less than overheads actually incurred.

Over/under-absorption of overheads will occur in the following situations:
(i) actual overheads incurred are different from budgeted overheads, and/or
(ii) actual production level is different from the budgeted production level

CHAPTER 6 (Standard Costing)

Work Them Out

1. D	2. B	3. B	4. D^{*}	5. B^{*}	$6 . \mathrm{B}$	7. B	8. A^{*}	9. D^{*}	10. A^{*}

* Working: 4: $(50-55) \times 22,000=110,000 \mathrm{U}$

5: $[19,000-(2 \times 10,000)] \times 50=50,000 \mathrm{~F}$
8: $[8-(41,000 / 5,000)] \times 5,000=1,000 \mathrm{~A} ;[6-(17,600 / 3,200)] \times 3,200=1,600 \mathrm{~F}$
9: $[5,000-(5,000+3,200) \times 0.7] \times 8=5,920 \mathrm{~F} ;[3,200-(5,000+3,200) \times 0.3] \times 3=4,440 \mathrm{~A}$
10: $[(7 \times 800)-(5,000+3,200) \times 0.7] \times 8=1,120 \mathrm{~F} ;[(3 \times 800)-(5,000+3,200) \times 0.3] \times 6=360 \mathrm{~F}$

Short Questions

1. Use of lower grade labour of lesser pay favourable to labour rate variance but:

- unfavourable to labour efficiency variance because of less skilful workers
- unfavourable to material usage variance because of wastage

Use of higher grade labour of more pay unfavourable to labou. rete variance but

- favourable to labour efficiency variance because of smootı. operation
- favourable to material usage variance because of redured wastage

2. Use of material that is of higher quality but more expensive to substitute the other causes an unfavourable variance because it increases the cost of the standard mis - adverse direct material mix variance.

Use of better quality material will reduce Nastage and improve yield of material - favourable material yield variance.
The net effect is equivalent to thet of the material usage variance, and the two subdivided variances explain the background.

Long Questions

1.

(a) (i) Direct material used, in $\mathrm{kg}=10,000 \times 20+4,000$ (materials usage variance) $=204,000 \mathrm{~kg}$
(ii) Direct material purchased, in $\mathrm{kg}=(204,000+1,000) \mathrm{kg}=205,000 \mathrm{~kg}$
(iii) Direct material purchased, in dollars $=(204,000+1,000) \times \$ 5+\$ 51,250=\$ 1,076,250$
(iv) Actual average material cost per $\mathrm{kg}=\$ 1,076,250 / 205,000 \mathrm{~kg}=\$ 5.25 / \mathrm{kg}$
(v) Actual direct manufacturing cost, in dollars
$=\$ 300,000+\$ 30,000$ (labour efficiency variance) $-\$ 33,000$ (labour rate variance) $+204,000 \times \$ 5.25+\$ 290,000+$ \$420,000
= \$2,078,000
(vi) Direct manufacturing labour hours $=10,000$ hours $+1,000$ (efficiency variance) $=11,000$ hours
(vii) Actual variable overhead, in dollars
$=\$ 400,000$ (flexible budget amount) $+40,000$ (variable overhead efficiency variance) $-20,000$ (variable overhead spending variance)
= \$420,000
(viii) Actual machine hours used $=\$ 40,000 / \$ 20+20,000=22,000$ hours
(ix) Actual fixed manufacturing overhead, in dollars $=\$ 300,000-\$ 10,000=\$ 290,000$
(b) The budgetary control system comprises the following procedures:

- assignment of control responsibility, preparation of budgets
- collection of actual performance
- comparison of actual performance against budgets
- analysis of variances
- communication of results to responsible managers
- corrective actions and/or revision of budgets

2.

(a) Operating statement for the month ended 31 March 2008:

Number of units sold	Budget 23,000	Actual 23,000	Variance 0
	\$	\$	\$
Sales	230,000	225,400	4,600
Cost of goods sold:			
Direct materials	80,500	82,830	2,330
Direct labour	46,000	41,250	4,750
Production overheads - fixed — variable	20,000	23,000	3,000
	18,400	16,000	2,400
	164,900	163,080	1,820
Gross profit	65,100	62,320	$\underline{2,780}$
Selling overheads - fixed — variable	15,000	1:1:000	1,000
	25,300	26,000	$\underline{700}$
	40,300	40,000	300
Net profit	24,200	$\underline{\underline{22,320}}$	$\underline{\underline{2,480}}$

(b) Material price variance: $(S P-A P) \times A Q=\{[\$ 70000 /(3.5 \times 20,000)]-\$ 1.1\} \times \$ 82,830 / \$ 1.1=\$ 7,530 \mathrm{~A}$

Material usage variance: $(S Q-A Q) \times S P=13.5 \times 23,000-\$ 82,830 / \$ 1.1) \times \$ 70,000 /(3.5 \times 20,000)=\$ 5,200 \mathrm{~F}$
Labour rate variance: (SR - AR) x AH = (\$50 - \$55) x \$41,250 / \$55 = \$3,750 A
Labour efficiency variance: (SH - AF) $\div>\mathrm{S}=[(\$ 46,000 / \$ 50)-(\$ 41,250 / \$ 55)] \times \$ 50=\$ 8,500 \mathrm{~F}$
(c) Possible reasons for adverse material price variance:

- increase in the purchase p.ice os material
- inefficient purchasing fur.ction
- use of better quality material than the standard

Possible reasons for favourable material usage variance:

- reducing wastage by using better quality material than the standard
- more effective use of materials by labour
- use of better quality material for jobs

CHAPTER 7 (Job Costing)

Work Them Out

1. C	2. B	3. C	4. B^{*}	5. B^{*}	6. D	7. B	8.D	9.D	10. C

```
* Working: 4: (2 x 325,000) - 620,000 = 30,000
```

 5: \(50,000 \times 1.1=55,000\)

Answers

Short Questions

1.

(a)

Manufacturing Overhead Control a/c			
Indirect costs incurred	59,800	Transfer to work in progress J111 [52,000 x 80\%]	41,600
Indirect materials	3,000	Transfer to work in progress	20,800
		J112 [26,000 x 80\%]	
Indirect labour	2,000	Under-absorption	2,400
	64,800		64,800

The manufacturing overhead is under-absorbed as it has a debit balance of $\$ 2,400$, i.e. the amount incurred is more than the amount absorbed. The balance shall be written off as a separate item under cost of goods sold in the profit and loss account for the period.
(b)

	Work In Progress $\mathbf{- ~ J 1 1 2}$	
Direct materials	21,000	Carried forward
Direct labour	26,000	
Manufacturing overhead	20,800	
	67,800	67,800

The value of closing WIP carried forward is understated because of the under-absorption of overhead costs.
2. - The cost input of each job is order-specific and may differ from one to another.

- Costs (direct and indirect) accumulate when a job is processed.
- Costs accumulated in accounts will remain as work in progress until completion oi job.
- The cost of final product of each job is calculated individually.

Long Questions

1.

(a)

Material	Job R092	Job N090	Job Nn?3
	\$	\$	
Opening balance	10,000		41.000
MR336	40,000		
MR338		91,000	
MR339			35,000
MT024	$(6,000)$		6,000
MN017		$(5,000)$	
	44,000	86,000	85,000
Labour cost			
Opening cost	16,800		22,800
Designers	3,000	7,200	4,500
Engineers	2,240	4,480	5,600
Supervisors	6,000	2,000	12,000
Workers	14,280	12,600	19,600
	42,320	26,280	64,500
Overheads (60\% labour)	25,392	15,768	38,700
Total cost	111,712	128,048	188,200
Prices quoted	130,000	140,000	170,000
Profit	18,288	11,952	$(18,200)$

(b) Examples for non-manufacturing businesses that use job-order costing include consultancy services, garages and advertising services.
2.

	Job I	Job II	Job III	Job IV	Total
Material	10,000	9,000	8,000	6,000	33,000
Material returned	$(1,500)$	(700)		(800)	$(1,800)$
Material transferred out	$(1,000)$				1,800
	8,000		8,000		
	8,300	9,300	8,000	5,200	30,800
	9,000	6,000	5,000	4,000	
Labour	14,400	9,600	8,000	6,400	
Production overhead	31,700	24,900	21,000	15,600	
Production cost					

Other overhead (65\% production

cost)	20,605	16,185	13,650	
Total cost	52,305	41,085	34,650	
Sales	50,000	48,000	55,000	24,960
Profit	$(2,305)$	6,915	20,350	

CHAPTER 8 (Process Costing)

Work Them Out

1. B	2. D^{*}	3. B^{*}	$4 . \mathrm{C}^{*}$	$5 . \mathrm{B}^{*}$	$6 . \mathrm{D}^{*}$	7. C^{*}	8. A	9. D	10. C

* Working: 2: $100+2,800-80+100=2,920$

3: $1,200+3,000-80-800=3,320$
4: $\$ 100,000+\$ 25,000=\$ 125,000$
5: $5,000 \times(\$ 18-\$ 2)$ and $8,000 \times(\$ 22-\$ 3)$
6: $(5,000 \times 90 \%) \times(\$ 39-\$ 6)=\$ 148,500$
7: $[(8,000 \times 90 \%) \times(\$ 43-\$ 8)]-(8,000 \times 90 \% \times 2 \% \times 43)=\$ 245,808$

Short Questions

1.

(a) Physical unit method

	\mathbf{M}		\mathbf{N}
Quantity (units)	161,000	130,000	80,000
$\%$	43.40%	35.04%	21.56%
Share of joint cost (\$)	$1,388,800$	$1,121,280$	689,920
Further processing cost (\$)	250,000	300,000	500,000
Total cost (\$)	$1,638.8 \mathrm{co}$	$1,421,280$	$1,189,920$
Unit product cost (\$)	10.18	10.93	14.87

(b) Sales value method (at split-off point)

	\mathbf{M}	\mathbf{N}	\mathbf{X}
Quantity (units)	161,000	130,000	80,000
Selling price at split-off point (\$)	12	14	10
Sales revenue at split-off point (\$)	$1,932,000$	$1,820,000$	800,000
$\%$	42.44%	39.98%	17.58%
Share of joint cost (\$)	$1,358,080$	$1,279,360$	562,560
Further processing cust			
Total cost $(\$)$	250,000	300,000	500,000
	$1,608,080$	$1,579,360$	$1,062,560$
Unit product cost $(\$)$			

(c) Net realisable value method

	\mathbf{M}	\mathbf{N}	\mathbf{X}
Quantity (units)	161,000	130,000	80,000
Selling price (after further processing) (\$)	25	18	20
Sales revenue (\$)	$4,025,000$	$2,340,000$	$1,600,000$
Further processing cost (\$)	250,000	300,000	500,000
Net realisable value (\$)	$3,775,000$	$2,040,000$	$1,100,000$
$\%$	54.59%	29.50%	15.91%
Share of joint cost (\$)	$1,746,880$	944,000	509,120
Further processing cost (\$)	250,000	300,000	500,000
Total cost (\$)	$1,996,880$	$1,244,000$	$1,009,120$
Unit product cost (\$)	12.40	9.57	12.61

2. Total costs in calculation of unit cost

The total production costs used in weighted average method comprise opening WIP cost, material input and conversion input costs during the period.

The total production costs in first-in-first-out (FIFO) method comprise materials and conversion inputs during the period. This method does not include the opening WIP cost in the calculation of unit cost but assigns it separately to completed units.

Equivalent units

The main difference between the weighted average method and the FIFO method is in the calculation of equivalent units done. FIFO counts the work done on the incomplete portion of opening WIP and as the first work done in the process. It expresses the work done on opening WIP in terms of equivalent units.

The weighted average method does not count the outstanding work on the opening WIP in the calculation of equivalent units because the method assumes that it is not separable from input during the period once the process has started.
3. In process costing, products need to go through a number of processes before completion, and WIP may exist in each process. Equivalent units are used in process costing to measure WIP in terms of equal quantity of whole units of complete work. Each component of input (materials, labour and production overheads) can be expressed in equivalent units based on their different degrees of completion in WIP. Unit cost of production for each component of input (total cost divided by respective equivalent unit) can be calculated and used to value WIP and completed output. It forms the basis of process costing because cost of output of each process is calculated and accumulated to arrive at the value of finished goods.

Long Questions

1. Calculation of equivalent unit and cost per equivalent unit:

Second Process

	Materials Input	Materia! かdded	Labour And Overheads
Completed units (kg) transferred to Third Process	25,000	25,000	25,000
Closing work in process (W1)	4,000	2,400	1,600
Abnormal gain (W2)	(500)	(500)	(500)
Equivalent units	28,50	26,900	26,100
Costs (W3)	\$171,000	\$134,500	\$78,300
Cost per equivalent unit	-\$6	\$5	\$3
Third Process			
	6 aserials Input	Materials Added	Labour And Overheads
Completed units (kg) transferred to finished goods	24,000	24,000	24,000
Closing work in process (W7)	1,000	700	300
Abnormal loss (W8)	1,000	1,000	1,000
Equivalent units	26,000	25,700	25,300
Costs incurred in the period	\$350,000	\$144,200	\$118,500
Costs of opening work in process	\$40,000	\$10,000	\$8,000
	\$390,000	\$154,200	\$126,500
Cost per equivalent unit	\$15	\$6	\$5

Second Process Account					
	Kg	\$		Kg	\$
Materials input from First Process	30,000	171,000	Transferred to Third Process (W5)	25,000	350,000
Materials added		134,500	Normal loss	1,500	0
Labour		26,100	Closing WIP (W6)	4,000	40,800
Overheads		52,200			
Abnormal gain (W4)	500	7,000			
	30,500	390,800		30,500	390,800

	Kg	\$		Kg	\$
Opening WIP	3,000	58,000	Finished goods (W9)	24,000	624,000
Materials input (from Second Process)			Normal loss	2,000	0
	25,000	350,000	Abnormal loss (W10)	1,000	26,000
Materials added		144,200	Closing WIP (W11)	1,000	20,700
Labour		23,700			
Overheads		94,800			
	28,000	670,700		28,000	670,700

Working:

(W1) $\quad 4,000 \times 100 \%=4,000 ; 4,000 \times 60 \%=2,400 ; 4,000 \times 40 \%=1,600$
(W2) $\quad[30,000 \times(1-5 \%)-25,000-4,000]$ units $=500$ units
(W3) Labour and overheads: $\$ 26,100 \times(1+200 \%)=\$ 78,300$
(W4) $\quad \$(6+5+3) \times 500=\$ 7,000$
(W5) $\quad \$(6+5+3) \times 25,000=\$ 350,000$
(W6) Closing WIP valuation:
Materials input $(4,000 \times \$ 6)$
Materials added $(2,400 \times \$ 5)$
Labour and overheads $(1,600 \times \$ 3)$

Labour and overheads (1,600 x \$3)
(W7) $\quad 1,000 \times 100 \%=1,000 ; 1,000 \times 70 \%=700 ; 1,000 \times 30 \%=300$
(W8) $\quad[25,000 \times(1-8 \%)+3,000-24,000-1,000]$ units $=1,000$ units
(W9) $\quad \$(15+6+5) \times 24,000=\$ 624,000$
(W10) $\quad \$(15+6+5) \times 1,000=\$ 26,000$
(W11) Closing WIP valuation:

	$\$$
Materials input $(1,000 \times \$ 15)$	15,000
Materials added $(700 \times \$ 6)$	4,200
Labour and overheads $(300 \times \$ 5)$	1,500

2.

(a) Number of equivalent units (EU)

	Total Units	Materiais	Conversion Costs
Work in process inventory, 1 March	3,000		
Started in March	$\underline{10,000}$		
	$\underline{13,000}$	6,000	
Completed units	6,000	6,000	-
Normal loss $(10,000 \times 8 \%)$	900	-	200
Abnormal loss			
	$\underline{6,000}$	$\underline{6,000}$	$\underline{3,600}$
Work in process inventory, 31 March	$\underline{13,000}$	$\underline{12,200}$	$\underline{9,800}$
$(100 \% ; 60 \%)$			

(b) Cost per equivalent unit

	Total	Materials	Conversion Costs
	\$	\$	\$
Work in process inventory, i'Mıurch	225,000	90,000	135,000
Costs incurred in the mont	1,463,800	324,800	1,139,000
	1,688,800	414,800	1,274,000
Number of equivalent units		12,200	9,800
Cost per equivalent unit		34	130

(c) Assignment of costs

	Total	Materials	Conversion Costs
	\$	\$	\$
Units completed and transferred out			
(\$34 x 6,000; \$130 x 6,000)	984,000	204,000	780,000
Abnormal loss (\$34 x 200; \$130 x 200)	32,800	6,800	26,000
Work in process inventory, 31 March			
(\$34 x 6,000; \$130 x 3,600)	672,000	204,000	468,000
	1,688,800	414,800	1,274,000

(d) Joint products are two or more products that are separated from a joint processing operation, each having a substantial saleable value to warrant recognition as a main product.

The other products of a joint processing operation that have a low sales value compared with the sales values of the joint products are called by-products.

Answers

CHAPTER 9 (Contract Costing)

Work Them Out

1. D	2. C	3. A	4. C	5. D	6. B	7. D^{*}	8. A^{*}	9. B^{*}	10. C^{*}

* Working: 7: $800 /(800+200)=80 \%$

8: $500,000-300,000=\$ 200,000$
9: $(1,200,000-750,000-250,000) \times(750,000 / 1,000,000)=\$ 150,000$
10: $200,000-250,000=(\$ 50,000)$

Short Questions

1. - Cost value is large.

- Duration of performance is long and covers more than one accounting period.
- Assessment of progress is required during the course.
- Profit is recognised in part and based on estimation.
- Loss is recognised in full if foreseeable.

2.

(a) The outcome of a contract work can be estimated reliably. - HKAS 11
(b) By reference to the stage of completion - there is no specific figure, and the general guideline is not to recognise profit in early stage and two-thirds completion will be a prudent reference point.
(c) Loss incurred or expected must be recognised in full in the period when it is recognised.

Long Questions

1.

Hire of plant	100	Cost of work certified c/f	
Wages	498		
Other expenses	82		
General overheads $(2,160 \times 5 \%)$	108		
		1,729	

In consideration of a majority of work has been completed, the profit recommended to take is: $370,000 \times$ Value of work certified $(2,160) /$ Contract price $(2,280)=350,526$

CHAPTER 10 (Activity-based Costing)

Work Them Out

1. D	2. C	3. A	4. C	5. D	6. D^{*}	7. C	8.	9. B	10. C

* Working: 6: $(40,000+296,000+191,600) / 8,000=66$ (ionded)

Short Questions

1. Using activity-based costing:
(a) Cost driver rates:

2. Using activity-based costing:

Calculation of cost driver rates:

Utility costs per machine hour $(\$ 189,000 / 9,000) ; 9,000=1,000+2,500 \times 1.5+2,500 \times 2$	21
Set-up cost per production run $(\$ 120,000 / 60)$	2,000
Cost of ordering per order $(\$ 18,000 / 90)$	200
Cost of material handling per requisition $(\$ 33,000 / 200)$	165

Cost summary:

Long Questions

1.

(a) (i) to (iii)

Total operating room capacity (hours)	$\underline{10,800}$
Operating hours at 70\% utilisation ratio (hours)	7,560
Hours for ear operations ($3.6 \times 1,270$)	4,572
Hours for eye operations	$\underline{\underline{2.988}}$
Number of eye operations (2,988 / 3)	$\underline{996}$
Total costs	\$15,036,780
Less: Fixed overhead	12,000,000
Total variable costs	3,036,780
Less: Total variable costs for e)/G वperations (\$1,450 x 996)	1,444,200
Total variable costs for ear Cherations	1,592,580
Number of ear operations performed	$\underline{1,270}$
Variable cost per ear operation	\$1,254

(b) (i) and (ii)

	Eye Operation	Ear Operation
	$\$$	$\$$
Variable cost	1,450	1,254
Fixed cost	$(1,500 \times 3)$	$(1,500 \times 3.6)$
	$\underline{4,500}$	$\underline{5,400}$
Total cost	5,950	6,654
Profit margin (10%)	$\underline{595}$	$\underline{665.40}$
Charge per operation	$\underline{6,545}$	$\underline{7,319.40}$

(c)

Activities	Eye Operation	Ear Operation	Total
	$\$ \prime 000$	$\$ \prime 000$	$\$ \prime 000$
Consultation	5,388	3,592	8,980
X-rays	900	900	1,800
Post-operation care	$\underline{305}$	$\underline{915}$	$\underline{1,220}$
Budgeted fixed overhead	$\underline{6,593}$	$\underline{5,407}$	$\underline{12,000}$

Number of operations	996	1,270	
Budgeted fixed overhead per operation	$\$ 6,619$	$\$ 4,257$	

	Eye Operation	Ear Operation
	$\$$	$\$$
Variable cost	$1,450.0$	$1,254.0$
Fixed cost	$\underline{6,619.0}$	$\underline{4,257.0}$
Total cost	$8,069.0$	$5,511.0$
Profit margin (10%)	$\underline{806.9}$	$\underline{551.1}$
Charge per operation	$\underline{8,875.9}$	$\underline{\underline{6,062.1}}$

(d)

	Eye Operation	Ear Operation
	$\$$	$\$$
Service charge per traditional costing	$6,545.0$	$7,319.4$
Service charge per ABC	$\underline{8,875.9}$	$\underline{6,062.1}$
Under/(over) charged	$\underline{2,330.9}$	$\underline{(1,257.3)}$

ABC should be used as it provides a more accurate allocation of fixed overheads to different types of operations; therefore the service charges will be fair for all patients.
2.
(a) Production overheads are absorbed on a machine hour basis:

Total machine hours next year:

	Hours
Regular	800
Superior	500
Dream	$\underline{700}$
	$\underline{2,000}$

Production overhead absorption rate: $\$ 4,000,000 / 2,000=\$ 2,000$ per machine hour
Unit selling price:

\mathcal{N}	Regular	Superior	Dream
ω	\$		\$
Direct materials	940,000	270,000	800,000
Direct labour	300,000	200,000	200,000
Prime costs	1,240,000	470,000	1,000,000
Production overheads (\$2,00 per machine hour)	1,600,000	1,000,000	1,400,000
Production costs	$\underline{\underline{2,840,000}}$	1,470,000	$\underline{\underline{2,400,000}}$
Units produced (packs)	800,000	300,000	500,000
	\$	\$	\$
Unit production costs	3.55	4.90	4.80
Unit mark-up (40\%)	1.42	1.96	1.92
Unit selling price	$\underline{\underline{4.97}}$	$\underline{6.86}$	$\underline{\underline{6.72}}$

(b) (i) Applying activity-based costing:

Cost Driver Rates
Machining department overheads per machine hour
[$\$ 1,600,000 /(800+500+700)]$
Set-up overheads per production run $[\$ 1,500,000 /(60+140+100)]$
Material handling overheads per requisition [\$480,000 / ($40+90+70)$]
Quality inspection overheads per production run
$[\$ 420,000 /(60+140+100)]$
1,400
(ii) Unit selling price

	Regular	Superior	Dream
Prime costs	$\$$	$\$$	$\$$
	$1,240,000$	470,000	$1,000,000$

Production overheads:			
Machining department	640,000	400,000	560,000
Set-up	300,000	700,000	500,000
Material handling	96,000	216,000	168,000
Quality inspection	84,000	196,000	140,000
	$\underline{\text { 2,360,000 }}$	$\underline{\text { 1,982,000 }}$	$\underline{2,368,000}$
Units produced (packs)	800,000	$\underline{\underline{300,000}}$	500,000
	\$	\$	\$
Unit production costs	2.95	6.61	4.74
Unit mark-up (40\%)	1.18	2.64	1.90
Unit selling price	$\underline{4.13}$	$\underline{\underline{9.25}}$	$\underline{\underline{6.64}}$

(c) Comparison of the unit selling prices:

	Regular	Superior	Dream
Traditional absorption costing	$\$$	$\$$	$\$$
Activity-based costing	4.97	6.86	6.72
	4.13	9.25	6.64

Under traditional absorption costing, the company earns much less revenue when it sells Superior at the price of $\$ 6.86$ (as result of under-costing). At the same time, the selling price for Regular at $\$ 4.97$ may be too high (as a result of overcosting) to compete with competitors. The selling price of Dream under either method is more or less the same.

Activity-based costing is generally regarded as being superior to traditional absorption costing because the production cost calculated under activity-based costing, by referring to the cause-and-effec reationship between the level of an activity and the costs related to that level of activity, is more accurate and meaningful.

CHAPTER 11 (Cost-Volume-Profit Analysis and Short-Term Decision Maning)

Work Them Out

1. C	2. C	3. D	4. D	5. C^{*}	6. B^{*}	7. D^{*}	8.r	9. B	10. B

* Working: 5: $150-(1,000 / 20)-9-11=80$

6: $(1,000+180+220) / 80=17,500 ; 20,000-17,500=2,500$
7: $[(100,000 \times 0.3)+24,000] / 0.3=180$ 600

Short Questions

1. -Variable costs change linearly with production volume within a relevant range.

- Relevant range is the production renge expected in the short-run (See Note).
- Sales prices are constant.
- The number of units produced is equal to the number of units sold.
- Fixed costs and variable costs can be precisely estimated.
- The volume of output is the only factor which affects the total cost.
- A single product or a constant sales mix shall apply.
- The effect of time value of money is negligible.

Note: The assumption of short-run is important because factors on sales prices, production capacity and most costs are mostly stable in the short-run so that the relationship between values and quantity can be derived; in the longer term, production method may change and even fixed cost may vary. Besides, the cost structure outside the range of normal production capacity, e.g. factory facilities, may also change.
2.

Short-term Decisions

Make or buy (outsourcing)

Accept or reject special order

Sell or process further

Possible Qualitative Considerations

Quality of products and reliability of delivery schedule of supplier; perception of employee of scale-down of production facilities; leakage of product ingredients secrecy to outside contractor.
Effect on future order / potential business from the customer if rejected; Effect on relationship with existing customers.
Effect on timing of cash flows if further process; consumers' preference on the difference.

Eliminate or retain unprofitable products (discontinuance)

Optimum production mix

Redundancy of workers and possible reaction (strike, morale) upon discontinuance; damage to customer loyalty ; effect of brand or goodwill on other products on keeping the unprofitable production Synergistic effect of sale mix; completeness of product range in market.
3.
(a) Variable costs:

	$\$ \prime 000$
Direct materials	17,810
Direct labour	540
Production overheads: variable	1,226
Selling overheads: variable	$\underline{224}$
	$\underline{19,800}$

Variable costs per unit: $\$ 19,800,000 / 36,000=\$ 550$
Contribution per unit: $\$ 1,250-\$ 550=\$ 700$
Breakeven point in units: $\$(12,590,000+2,110,000) / 700=21,000$ units
Margin of safety in dollar sales: $(36,000-21,000) \times \$ 1,250=\$ 18,750,000$
(b) Current situation:

	$\$ \prime 000$
Total contribution $(\$ 700 \times 36,000)$	25,200
Less: Fixed costs $(12,590,000+2,110,000)$	14,700
Net profit	$\underline{10,500}$

New proposal:
Revised sales volume: 36,000 units $\times 80 / 60=48,000$ units
Revised selling price per unit: $\$ 1,250 \times 90 \%=\$ 1,125$
Revised contribution per unit: $\$ 1,125-\$ 550=\$ 575$
\$'000
Total contribution ($\$ 575 \times 48,000$) 27,600
Less: Fixed costs (12,590,000 + 2,110,000 + 3,000,00, 17,700
Net profit $\quad \underline{\underline{9,900}}$
The proposal from the marketing director sinould not be adopted as it will lower the company's profit by $\$ 600,000$ (\$10,500,000 - \$9,900,000).

Long Questions

1.

(a) Units to be sold: $\$ 4,800,000 / \$ 1 ? 0=40,000$ units

Variable Costs	Total	Per Unit
	$\$, 000$	$\$$
Direct material	1,200	30
Direct labour	600	15
Production overhead: variable	520	13
Non-production overhead: variable	$\underline{480}$	$\underline{12}$
	$\underline{2,800}$	$\underline{\underline{70}}$

Contribution margin per unit: $\$(120-70)=\$ 50$
Breakeven point in unit: $\$(780,000+620,000) / \$ 50=28,000$ units
(b) Margin of safety: $(40,000-28,000) / 40,000 \times 100 \%=30 \%$

The margin of safety measures the difference between the budgeted level of sales and the breakeven sales. It is used as a measure of risk, the larger the ratio, the safer is the situation since there is a lower probability of reaching the breakeven point. A margin of safety of 30 percent means that losses begin if the sales revenues of the company drop by more than 30 percent.
(c) Selling price: $\$ 120 \times 95 \%=\$ 114$

Revised contribution margin per unit: $\$(114-70)=\$ 44$
Sales volume: 40,000 units $/ 80 \%=50,000$ units

Total contribution $(\$ 44 \times 50,000) \quad 2,200$
Fixed overheads $(\$ 780,000+\$ 620,000+\$ 50,000) \quad 1,450$

Net profit
The proposal from the marketing director is feasible since it can increase the company's net profit by $\$ 150,000$ to \$750,000.
(d)

Required Contribution	\$'000
Fixed costs (\$780,000 + 620,000)	1,400
Target profit	800
	$\underline{\underline{2,200}}$
Revised sales volume (40,000 units $\times 110 \%$)	44,000
Revised contribution margin per unit	\$
\$(2,200,000 / 44,000)	50.00
Add: Revised variable costs per unit	
Revised selling price per unit	$\underline{\underline{118.50}}$

2.

(a) Profit statement for the year ended 31 December 2006:

	\mathbf{M}	\mathbf{L}	\mathbf{S}	Total
	$\mathbf{\$}$	$\mathbf{\$}$	$\mathbf{\$}$	$\mathbf{\$}$
Sales	$2,160,000$	$3,900,000$	$3,402,000$	$9,462,000$
Less: Variable costs				
Direct materials	378,000	$1,023,750$	453,600	$1,855,350$
Direct labour	630,000	$1,092,000$	1,134000	$2,856,000$
Variable overheads	945,000	$1,638,000$	1791,000	$4,284,000$
Total variable costs	$1,953,000$	$3,753,750$	$-\frac{3,288,600}{8,995,350}$	
Contribution	207,000	146,250	113,400	466,650
Less: Fixed overhead				$\underline{315,000}$
Net profit				151,650

(b) Profitability ranking:

	M		S
	$\$$		\$
Sales per unit	21.60	30.00	18.90
Less: Variable costs			
Direct materials	3.78	7.875	2.52
Direct labour	6.30	8.40	6.30
Variable overheads	9.45	12.60	9.45
Total variable costs per unit	19.53	28.875	18.27
Contribution per unit	2.07	1.125	0.63
Direct labour hours per unit	1.50	2.00	1.50
Contribution per labour hour	1.38	0.5625	0.42
Ranking	1 st	$2 n d$	$3 r d$

Optimum production schedule:

Total available labour hours	Labour Hours
Less: Product M (100,000 units)	150,000
	350,000
Less: Product L (130,000 units)	260,000
	90,000
Less: Product S (60,000 units)	90,000

The company should manufacture:

- Product M: 100,000 units
- Product L: $\quad 130,000$ units
- Product S: $\quad 60,000$ units

Projected profit calculation for the year ended 31 December 2006:

	M	L	S	Total
	$\$$	$\$$	$\$$	$\$$
Contribution per unit	2.07	1.125	0.63	
Sales in units	100,000	130,000	60,000	

(c) Possible ways to overcome labour shortage:

- Sub-contract out work to low-cost service providers.
- Improve productivity through incentive schemes, bonus, etc.
- Automation.
- Redesign the product process to reduce the requirement for labour hours.

3.

(a) Minimum price to be quoted to the potential customer with conversion:

	Note	$\$$
Disposal value of the tableware	ii	120,000
Relevant costs of conversion:	iii	9,000
Material X	iv	13,500
Material Y	v	2,400
Skilled labour	vi	1,500
Unskilled labour	vii	$\underline{1,250}$
Variable overheads		$\underline{\underline{147,650}}$

(b) Notes:
(i) Cost of production for the set of tableware is a sunk cost and is thus irrelevart.
(ii) Disposal value of $\$ 120,000$ for the tableware is the opportunity cost and should be included.
(iii) Since Material X will be used regularly by the company in other production, the company needs to buy the required Material X if it proceeds with the conversion. The historica cost is irrelevant and the relevant cost is the replacement cost of $\$ 45$ per unit and of $\$ 9,000$ in total ($\$ 45 \times \geqslant 00$).
(iv) Material Y is no longer used in production. If it is used for the conversion, it cannot be sold. The historical cost is also irrelevant. The relevant costs are the net realisitle value of the 400 units in inventory and the replacement cost for purchasing 100 units: $\$ 25 \times 400+\$ 35 \times 100=\$ 13,500$.
(v) The company will rationally take the lower of the:

- basic pay plus over-time allowance: $10 \times \$(21,2+100)=\$ 3,000$, and
- basic pay plus contribution forgone for othe iob: $10 \times \$(200+40)=\$ 2,400$.
- Thus the relevant cost of skilled labour io \$2,400.
(vi) Since the unskilled labour is current? working below full capacity, the hourly rate will be paid for the conversion cost.
(vii) Variable overheads are incremenial costs and are thus relevant.
(viii) Fixed overhead costs are ansorbed and do not change as a result of the conversion and are considered unavoidable fixed costs it is thus irrelevant for the conversion.

CHAPTER 12 (Budgeting and Budgetary Control)

Work Them Out

1. D	2. D	3. C^{*}	4. B^{*}	5. D	6. C	7. B	8. B	9. D	10. D

* Working: 3: 45,000 $+36,000+20,000+18,000=\$ 119,000$

4: Closing inventory $45,000+$ Materials required $80,000 \times 2$ - Opening inventory $40,000=$ Purchase 165,000

Short Questions

1. Production budget for the first quarter of 2010:

	January	February	March	Total
	Units	Units	Units	Units
Sales	10,000	9,000	12,000	31,000
Add: Closing inventory (W1)	$\underline{13,800}$	$\underline{17,600}$	$\underline{17,200}$	$\underline{17,200}$
	23,800	26,600	29,200	48,200
Less: Opening inventory	$\underline{(13,600)}$	$\underline{(13,800)}$	$\underline{(17,600)}$	$\underline{(13,600)}$
Production	$\underline{10,200}$	$\underline{12,800}$	$\underline{11,600}$	$\underline{\underline{34,600}}$

Working:
(W1) January: 9,000 $+12,000 \times 40 \%=13,800$
February: $12,000+14,000 \times 40 \%=17,600$
March: $14,000+8,000 \times 40 \%=17,200$

Answers

2. Budgeted profitability ranking:

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
	$\$$	$\$$	$\$$
Sales per unit	$\underline{320}$	$\underline{300}$	$\underline{280}$
Less: Variable costs	60	75	80
Direct materials	80	60	40
Direct labour	$\underline{90}$	$\underline{120}$	$\underline{100}$
Variable overheads	$\underline{230}$	$\underline{255}$	$\underline{220}$
Total variable costs per unit	$\underline{90}$	$\underline{45}$	$\underline{60}$
Contribution per unit	$\$ 45$	$\$ 30$	$\$ 60$
Direct labour hours per unit	$2 n d$	$3 r d$	1 st

Budgeted optimum production plan:

	Labour Hours	Product	Units Produced
Total available labour hours	10,100		
Less: $\mathrm{Z}(1 \times 2,800$ units $)$	$(2,800)$	Z	2,800
X $(2 \times 2,000$ units $)$	$\underline{(4,000)}$	X	2,000
Labour hours available for Y	$\underline{3,300}$	Y	2,200
			$(3,300 / 1.5)$

Long Questions

1.

(a)

	Jul	Aug	Sep	Oct	Nov	Dec
	\$'000	\$'000	\$'000	\$'000	\$'000	\$'000
Opening balance	$\underline{0}$	(38)	T 6	10.6	$\underline{217}$	34.5
Cash receipts:						
Capital introduced	50		-	-	-	-
Receipts from customers:						
Current month (50\% x 98\%)	49	98	117.6	127.4	122.5	73.5
The month after (50\%)	-	$\underline{50}$	100	120	130	125
Total receipts	92	148	$\underline{217.6}$	$\underline{247.4}$	$\underline{252.5}$	198.5
Less: Cash payments:						
Payments to suppliers	-	-	240	-	345	120
Salaries to sales representatives	15	15	15	15	15	15
Sales commissions	-	5	10	12	13	12.5
Rental deposits	24	-	-	-	-	-
Rent expenses	24	12	12	12	12	12
Government rent and rates	-	-	4	-	-	4
General expenses	2	2	2	2	2	2
Motor vehicles	72	-	-	-	$\underline{48}$	-
Total payments	137	34	$\underline{283}$	41	$\underline{435}$	165.5
Closing balance/(bank overdraft)	(38)	76	$\underline{10.6}$	$\underline{\underline{217}}$	$\underline{\underline{34.5}}$	$\underline{67.5}$

(b) Amount due to suppliers: $\$ 160,000$

Amount due from customers: $\$ 150,000 \times 50 \%=\$ 75,000$
Commissions due to sales representatives: $(\$ 150,000 \times 5 \%)=\$ 7,500$
(c) The cash budget compares the estimated cash receipts and cash payments of the company during the budget period and shows the resultant cash position. It helps in coordinating and controlling the financial aspect of the business. It ensures that sufficient cash is available when required. If shortage of cash is foreseen, borrowing may be required and if surplus of cash is revealed, the company may invest this surplus.
2.
(a) Cash budget for the period from January to March 2009:

	January	February	March
$\$$	$\$$	$\$$	$\$$
Opening balance	$\underline{168,800}$	$\underline{145,420}$	$\underline{32,452}$

Cash receipts:

(b) Amount due to suppliers: $\$ 340,000$

Amount due from credit customers: $\$ 320,000 \times 80 \% \times 20 \%+330,000 \times 80 \%=\$ 315,200$
(c) A fixed budget is one that is prepared for a single level of output and is intended to be kept constant even though there may be changes in activity output levels. A flexible budget is one that, by recognising different cost behaviour patterns, is designed to change as the level of activity changes.

A flexible budget is required when the actual output level attained is different from the budgeted output level. In order to overcome the problem, the actual output level attained can be compared with a budget that has the same level of output.

