

A priori evaluation, 88
A priori probability, 103
Absolute volatility, 245
Accumulation point, 9
Addition, 60, 63, 72-76, 99
Algebra
abstract, 1
Borel s-algebra, 91, 97, 104
matrix, 59-61, 72
ordinary, 60
sigma (s-), 86, 91-95, 97, 105
Alpha-stable distribution, 144
Anticipation, 105, 247-249, 252, 272-273, 277, 286
Antidiagonals, 63
Antinomies, 2 n1
Arbitrage free, 79-80, 268, 286-291
Arrays, 60, 83
Asset pricing
framework, 181, 267
model, 2, 59, 108, 116, 119
theorem, 79, 143
Augmented matrix, 68-69
Autoregressive integrated inoving average (ARMA), 70
Axiomatic set theory, 2n1
Basic concepts, 1-12
Basis point, 38-39
Bayesian statistics, 88
Bell curve, 133
Bellman. R., 163
Benkander distributions, 138
Bernoulli variable, 252
Bivariate normal distribution, 125
Black-Scholes
option pricing formula, 268, 286-292
stochastic differential equation, 288
Black-Scholes equation, 231, 234, 267
Black-Scholes model, 211, 268

Bond portfolio application, 164-178
Bonds
analysis, 26-27
callable, 30-32
embedded call, 30-31
and interest rates, $13,26-32,35,37-41$, $127,165,169,174-17$
option free, $30-32,35,37,169,286$
price, 27, 29, 169, 177
risk, 26, 261 。
value/valuaion, 28-29, 32
Borel sets, 1, 94, 96, 257
Boundary conditions. See Initial conditions
Bouncelvariation, 19, 46, 56, 265
Box algebra, 274
B. omwich integral, 54
brownian motion, 239, 243-245
applications to, 264-265
arithmetic, 280-283
Brownian motion excursion, 255
defined, 248-253
geometric, 275, 282-283, 286-287
Girsanov theorem applications, 264-265
properties, 254-255
random walk, 270
as stochastic process, 278
Bryson, M. C., 134
Burr distributions, 138
Cadlag functions, 250 n 3
Calculus in more than one variable, 40-41, 57
Calculus of variations, 148-149, 161, 163, 178
Call options, 30, 32, 287-291
Canonical Brownian motion, 252, 254
Capital allocation line (CAL), 114
Cash flow matching (CFM), 147, 165-168, 179
Cauchy condition, 247

Cauchy initial value problem, 232
Cauchy problem, 234-235
Cauchy's form, 34
Central Limit Theorem (CLT), 139, 141, 143
CGMY distribution, 145
Chain rule, 22-23, 29-34, 46, 51, 284
Chaos laws, 229-230
Chaotic systems, 229-230
Characteristic equations, 82, 183-185, 189-190, 193-194, 196, 199, 204-207
Characteristic function (c.f.), 123-124, 142-143, 146
Characteristic polynomial, 81
Characteristic roots, 193-195
Class of fat-tailed distributions, 135-139
Closed-form solutions, 211-212, 218-222
Coefficient matrix, 68-69
Column rank, 70-71, 84
Column vectors, 61, 72-74, 77, 83-84, 279
Companion matrix, 205
Complete market, 78
Complex roots, 188-192, 199-201
Components, 60-62, 99
Composite function, 10, 22, 46
Conditional expectation, 87, 108-111, 177
Conditional probability, 87, 92, 109-111
Consistent system, 68-69
Constant, 1, 41, 57

decay, 55

real, 21, 23, 53-54
Constant interest rates convexity ${ }^{2}$
Constant terms, 68
Continuity, 17-18
Continuous function, 1 $1-20,34-35,47,51$, 89, 102, 232,2,52,257
Continuous quantities, 8,12
Continuous-time martingale, 261-262
Continuum, 9, 17
Control theory, 148-149, 161-163, 178
Convergence, 35, 121-122, 146
Convexity, 14, 26, 32-34, 36-39, 165, 172-174
Convolution, 54-55, 57, 123-124, 136-137, 234
Convolution closure property, 136-137, 139
Cornish-Fisher expansion, 127-129, 132-133
Correlation, 108, 111, 113, 117, 119-120, 159
Correlation coefficient, 113, 125, 127, 146

Courant-Friedrichs-Lewy (CFL) conditions, 235
Covariance, 65, 86, 108, 113, 115-116, 119-120, 125, 280
Covariance matrix, 65, 125-126, 278
Critical point, 150-151
Cumulants, 127-128
Cumulation, 240, 243-245
Cumulative distribution function (c.d.f.), 96-97, 134

Darboux-Young approach, 95
Debt instrument, 102
Dedicated portfolio strategy, 147, 165
Definite integral, 162
Delta (sensitivity to underlying price changes), 31-32, 26e 291-292
Delta neutral, 291
Dempster-Schafer thuory of uncertainty, 90 n1
Density of points, $2,8-10$
Dependent ariables, $1,19,124,137,139$, 142. 146, 212-213, 237, 267

Dervation of the capital asset pricing model, 116-120
Derivatives, 212
anti-derivative, 43, 47
financial, 13, 43
first order, 14, 27
of a function, 15, 34-37, 40-42
higher order, 14, 26, 34
partial, 40
rules, 21-25
second order, 14,26
Determinants, 66-67, 83
Deterministic equivalents, 176
Deterministic variable, 11-12, 146
Diagonal matrix, 64-65
Diagonals, 63
Diagonals and antidiagonals, 63
Diagonization and similarity, 82-83
Difference equations
about, 181-182
finite difference method, 222-228
homogeneous difference equations, 183-192
key points, 209
lag operator L, 182-183
nonhomogeneous difference equations, 195-201
recursive calculation of values of
difference equations, 192-195
systems of homogenous linear difference equations, 202-209
systems of linear difference equations, 201-202
Difference quotient, 19, 224, 227, 235, 237
Differential calculus
about, 13-15
calculus in more than one variable, 40-41
continuity, 17-18
derivative rules, 21-25
higher-order derivatives, 26-34
key points, 41-42
limits, 15-17
notion of differentiation, 19-20
Taylor series expansion, 34-35
total valuation, 19
Differential equations
about, 211-213
closed-form solutions of ordinary differential equations, 218-221
defined, 213
key points, 237
nonlinear dynamics and chaos, 228-231
numerical solutions of ordinary
differential equations, 222-228
ordinary differential equations ($\mathrm{OD} \leq \mathrm{s}$), 213-216
partial differential equation (PDEs), 231-236
systems of ordinary diferential equations, 216-218
Differentiation, 14-15, 19-21, 42-44, 52, 54, 57
Diffusion equation, 231-235
Dirac Delta, 252
Discontinuous function, 18
Discrete probabilities, 93, 104, 112
Discrete quantities, $8,12,20$
Discretization, 235
of stochastic equation, 270
Distances and quantities, 6-10
Distribution function, 96, 135
Distribution law, 96
Distributions and distribution functions, 96
Dollar convexity, 32-33, 36, 39
Dollar duration, 27-29, 36

Domain, 10
frequency, 52
multi-dimensional, 231
ordinary function, 269-271, 277
original, 57
target, 52
time, 52
Domain of attraction, 141-143
Doob-Meyer decomposition, 261
Drift, 239, 262, 264-265, 280-281, 283, 287
Duration, 14, 26, 29-32, 36-39, 41, 165, 170, 172-174, 179
Dynamic Programming (Bellman), 163
Dynamical system, 226, 228-229
Economic variable, 13, 1ヶ3, 181, 240
Effective duration, 30, 22, 172
Eigenvalues, 81-83, 150-151, 159, 204-206, 209
Eigenvectors 21-84, 205, 207
Elementaiy ipnction, 245-247, 255-259, 266
Elementary properties of sets, 5-6
Elenents, 1-2, 4, 6, 10-11, 62-67, 70, 75, $77,83,235$
Euclidean space, 91, 106
Euler approximation, 223-224
Euler-Lagrange equation, 162
European options, 289-291
Events
and algebra of, 92, 104, 106, 249
disjoint, 90, 92-93
external, 146
extreme, 135
frequency of, 88
individual, 88-90, 93
vs. outcome, 89,91
possible, 104
probabilities, 90-91, 93, 103
Excess return, 61, 65, 74
Excess variable, 158
Extremal events, 135
Factors, 39, 61, 67, 78, 85, 127, 173
Fat tails, 133-135, 230
Fat tails and stable laws, 133-135, 139-145
Fat-tailed distributions, 133-139, 141, 146, 255
Feasible region, 157, 159

Filtration, 103-106, 111, 146, 249-250,
252, 255, 261, 263, 272, 276-278
Finance application, matrix algebra, 78-80
Finite difference method, 222-228
Finite variation, 19, 244
First derivative application, 27-29
First-order system of differential equations, 216
Fokker-Planck differential equations, 241
Forecastability, 87, 122
Fourier integrals, 234
Fourier transforms, 44, 52, 56-57, 123, 142, 220
Fractal dimension, 254
Fractals, 229-231, 254
Full rank, 67, 78, 84
Function, 1, 10-20, 110
Functional, 162
Functional form, 107, 125, 142
Functional link, 212-213
Functions, 10
Functions of variable, 285
Fundamental matrix, 204
Fundamental theorem of calculus, 51-52
Fuzzy measures, 87, 90 n4
Gaussian distribution, 124, 133-135, 137, 143
Gaussian tails, 134
General solution, 44, 56, 185, 189-1 20,195 , 197-198, 206, 209, 215, 218-219, 241
Generalization to several dimensions, 278-280
Girsanov theorem, 240, 6 2-265
Greeks, 211, 291
Hankel matrix, 70-72
Heavy-tailed distributions, 134
Hedging, 267-268, 292
Hermite numbers, 130
Hermite polynomials, 108, 129-133
Hessian determinants, 148-151
Hessian matrix, 148-150
Higher-order derivatives, 26-34
Homogeneous difference equations, 182-190, 202
complex roots, 188-192
higher-order, 193-195
real roots, 184-188
Homogeneous system, 69, 202-203

Identity matrix, 64
Improper integrals, 48-50, 52-53, 56, 220
Inconsistent system, 68
Indefinite integrals, 48-51, 95, 219, 240, 242-243
Independent and identically distributed (IID) sequence, 122-140, 269
Independent variables, 1, 19, 112-113, 137, $139,142,146,237,257$
Indeterminacy principle, 216
Indexes, 3-5, 10, 13
Indicator variable, 11
Infimum, 8, 45
Infinite non-countable set, 9
Infinite variation, 19
Information propagation, 103
Information structures, 103-106, 146, 176
Initial conditions. $2829,215-216$, $222-223,226,228,231-232,234-235$, 237, 240, 277, 281-285
Initial value problem, 203, 231-232
Injection. 10
Inner product, 73-74, 77
Instantaneous rate of change, $14-15,20,25$, 44
Integral calculus
about, 43-44
calculus in more than one variable, 57
fundamental theorem of calculus, 51-52
indefinite and improper integrals, 48-50
integral transforms, 52-57
key points, 57-58
Lebesgue-Stieltjes intervals, 47-48
Riemann integrals, 44-47
Integral transforms
about, 52
Fourier transforms, 56-57
Laplace transforms, 53-56
Integrals, 41, 43, 94-96. See also Indefinite integrals; Itô integrals; Stochastic integrals
definite, 51, 62, 240, 242-243, 271-272
Fourier, 234
improper, 48-50, 52-53, 56, 220
Lebesque-Stieltjes, 43, 96, 98
ordinary, 239-240, 271-272
proper, 44-45, 49
Riemann, 43, 46, 48-49
Riemann-Stieltjes, 244-245, 272

Integration, 15, 43-44, 51-52, 54-55, 57-58, 95-96, 239. See also Chain rule
limits, 46, 49-50
ordinary, 242-243
by parts, 46,51
stochastic, 240-241, 260, 265
Intersection of sets, 5, 11, 91
Interval of convergence, 35
Intuition behind stochastic differential integrals, 269-272
Intuition behind stochastic integrals, 242-248
Inverse and adjoint matrix operations, 77-78
Inverse function, 10
Inverse Laplace transform, 53-54, 221
Irrational number, 7-8
Itô integrals, 244-246, 248, 255-257, 271-272, 278-279, 293
Itô isometry, 258, 277
Itô processes, 173, 271-279, 285, 293
Itô stochastic integral, 246, 258-260
Itô's formula, 273-275, 282-283
Itô's Lemma, 284-287
Jordan canonical form, 207-209
Jordan diagonal blocks, 208
Jordan measure, 47

Kernel of the transform, 52
Key variables, 181
KoBoL distribution, 145
Kolmogorov differential equations, 241
Kolmogorov extension theo em, 240, 250-252
KR distribution, 145
k th moment, 112
Lag operator L, 182-183
Lagrange multipliers, 151-156
Lagrange's form, 34-35
Laplace transforms, 53-58, 200, 220-221
inverse, 53-54, 56, 221
one-sided, 53, 221
two-sided, 53-54
Law of Large Numbers (LLN) and the Central Limit Theorem, 139-141
Lebesgue measure, 47, 252
Lebesgue-Stieltjes integrals, 47, 96, 98
Lebesgue-Stieltjes intervals, 47-48

Lebesgue-Stieltjes measure, 47, 98
Lebesgue-Stieltjes sums, 48
Left continuous, 18
Leibnitz rule, 123
Length of vector, 62
Lévy flight distribution, 145
Lévy process, 250 n 3
Lévy stable distribution, 142, 144
Liability-funding strategies
about, 164
cash flow matching, 165-168
portfolio immunization, 168-174
scenario optimizations, 174-175
stochastic programming, 175-178
Limit. See also Itô's Lemma
cases of, 16, 93
and continuity, 17
existence of, $18,20,50$
finite, 41, 49-50
from the left, 8. 50
from the right, 18, 50
improper integrals, 49-50
infin ite 16
of integration, 46, 49
nction of, 14-17
Limit random variable, 120, 146
Linear difference equations, 181-182
homogeneous, 202-209
systems of, 201-202
Linear differential equation, 220-221
Linear independence and rank, 69-70
Linear objective function, 156
Linear programming (LP), 148-149, 156-158, 167, 178-179
Linear stochastic equation, 280, 282
Lipschitz condition, 215, 276
Logarithm of variables, 135
Log-gamma distributions, 138
Lognormal distributions, 138
Long position, 62, 291
Lower Riemann sum, 44-45
Maclaurin series, 35
Macroeconomic variables, 181
Marginal density, 98-99, 111
Marginal distribution function, 98-99
Market beta, 115
Market capitalization, 3, 5, 61
Markowitz mean-variance framework, 86, 144

Martingale, 87, 109, 111, 146, 239-240, 260-265
Mathematical programming, 148, 157-158, 178
Matrix algebra
about, 59-60
determinants, 66-67
diagonization and similarity, 82-83
eisenvalues and eisenvectors, 81-82
finance application, 78-80
Hankel matrix, 70-72
key points, 83-84
linear independence and rank, 69-70
singular value decomposition, 83
square matrices, 63-66
systems of linear equations, 59-69
vector and matrix operations, 72-78
vectors and matrices defined, 60-63
Matrix operations, 74-78
about, 74
addition, 75-76
inverse and adjoint, 77-78
multiplication, 76-77
transpose, 75
Matrix/matrices. See also Determinants;
Hankel matrix
addition, 75
adjoint of, 78
antidiagonals, 63
associative property, 77
augmented, 68
coefficient, 68
cofactor, 67
covariance, 65
defined, 60-63
diagonal, 63-65, 82
dimensions, 57, 59, 61-63, 73, 151, 230-231, 254, 278-280
distributive properties, 77
elements of, 62
identity, 82
identity matrix, 64
inversion, 77, 83
lower triangle, 65-66
multiplication, 76
operations, 74-78, 83
product of two, 76
rank of, 67
real, 62
scalars, 76, 83
similar, 82
skew-symmetric, 65
square, 63-65, 77, 82-83
sum of, 75
symmetrical, 71
upper triangular, 65-66
variance-covariance, 65
Maxima and minima, 149-151
Maximum, 8, 13, 45, 59, 88, 90, 150-151
Mean-variance framework, 114-120
Mean-variance portfolio theory and the capital asset pricing model, 114-120
Measurable space, 91, 93
Measure space, 90, 93-94
Minimum, 8, 13, 45, 59, 74. 73, 150-151, 153
Minor, 67, 70, 78
Mixed integer prograntming (MIP), 167, 179
Modified temperea stable (MTS) distributions, 145
Moment generating function, 53, 135
Montents and correlation, 111-113
Murtiple-period immunization, 169
Multiplication, 60, 72-74, 76-77, 83
n partial derivatives, 40
Naive set theory, 2 n 1
n-dimensional Borel sets, 91
n-dimensional cumulative distribution function (c.d.f), 97
n-dimensional cumulative function (d.f), 97
n-dimensional probability density function (p.d.f), 97
n-dimensional vector, 6,60
Nonanticipativity property, 164
Non-empty sets, 90
Nonhomogeneous difference equations, 195-202
Nonhomogeneous system, 68
Nonlinear dynamics and chaos, 228-231
Norm of vector, 62
Normal distributions, 124
Normal vs. stable distribution and its extensions, 143-145
Novikov theorem, defined, 263-264
n-tuples, 6-7
Numeraire, 11
Numerical algorithms
linear programming, 156-158
optimization, 156-161
quadratic programming, 158-161
Numerical solutions
of ordinary differential equations (ODEs),
222-228
of partial differential equations (PDE's),
$235-236$

Objective function, 148
One-dimension Itô formula, 273-275
One-dimensional standard Brownian motion, 250, 273
One-sided Laplace transform, 53
Operations, 72
of matrix/matrices, 83
vector, 72
Optimal solution, 157
Optimal value, 157
Optimization about, 147-149
bond portfolio application, 164-178
calculus of variations and optimal control theory, 161-163
key points, 178-179
Lagrange multipliers, 151-156
liability fund strategies, 164-178
maxima and minima, 149-151
numerical algorithms, 156-161
stochastic programming, 163-164
Option contracts, 291
Option-adjusted duration, ρ_{2}°
Order(s)
first order, 42, 135-1 7, 149-150, 154, 172, 174, 182, 193, 196, 201-202, 205-206, 209, 216-217, 220, 223, 228
second order, 112, 141, 149, 172, 174, 182, 189, 193-194, 196, 199, 201-202, 206, 212, 223, 285
third order, 37
of commutative operators, 73
of conclusion, 135
and degree of an ODE, 214
of derivatives, 193-195, 211-212
difference equations, 215-217
exponential, 53
exponential moments for all, 145
finite moments, 138, 145
higher order of derivatives, 193-195
highest order, 228, 285
highest order of derivatives, 212
k-order, 204-206
linear equations, 223
matrices, 69, 77-78, 81-83
nth order, 215, 217, 220, 231
order k, 202
order n, 215
order one convergence, 121
order $\mathrm{p}, 121$
of ordinary differential equations, 212, 217
of partial derivatives, 149-150, 204-206
of partial differential equations (PDE), 231
rank size, 138
reduction of, 216
Ordinary differertial equations (ODEs), 212-215, 267
about, 21?
closed-form solutions, 220-221
orde- and degree of an ODE, 214
solution to an ODE, 214-216
Ornstein-Uhlenbeck process, 282
Orthogonal vectors, 74
Outcomes, 89
Outcomes and events, 90-91
Paretian distribution, 144, 146
Pareto distributions, 138
Pareto-Lévy stable distribution, 144
Pareto's law, 138, 143
Partial differential equations (PDEs), 212, 267
diffusion equation, 231-232
numerical solutions of partial differential equations (PDE's), 235-236
solution of diffusion equation, 232-235
Partial duration, 41
Partition, 104
Path, 100
Perturbation, 270
Pontryagin's Maximum Principle, 163
Portfolio immunization, 168-174
Power series, 35
Power-law distributions, 138-139
Primary set of assets, 13

Primitive, 51
Probabilistic representation of financial markets, 102-103
Probability, basic concepts
about, 85-87
axiomatic theory of, 88
defined, 92-93
distributions and distribution functions, 96
filtration, 104-105
information structures, 103-104
integrals, 94-96
key points, 106
measure of, 93
in a nutshell, 89-90
outcomes and events, 90-91
probabilistic representation of financial markets, 102-103
probability in a nutshell, 89-90
probability space, 92
random variables, 93-94
random vectors, $97-100$
representing uncertainty with mathematics, 87-89
stochastic processes, 100-102
Probability, random variables and expectations, 107-148
about, 107-109
conditional probability and conditional expectation, 109-111
Cornish-Fisher expansion, 127-129, 132-133
fat tails and stable laws, $133-145$
Gaussian variables, 124-127
Hermite polynof ia's, 129-133
independent and identically distributed sequences, 122
key points, 146
mean-variance portfolio theory and the
capital asset pricing model, 114-120
moments and correlation, 111-113
sequences of random variables, 120-121
sum of variables, 122-124
Product rule, 23
p th absolute moment, 111
Quadratic equation, 244
Quadratic programming, 148, 158-161
Quotient rule, 23, 27

Radon-Nikodym derivative, 262-263, 265
Random variables, 11-12, 43, 85-87, 91, 93-94, 96-111, 113, 117, 120-128, 132-136, 142, 146, 212, 237, 239-240, 243, 245, 248-250, 252, 256, 262, 265, 267, 276-277, 285
Random vectors, 97-100
Random walk, 232, 253, 270
Range, 10
Rank, 67, 70-71
Rank-size order property, 139
Rate duration, 41
Rational numbers, 7
Real function, 10
Real numbers, 7
Real roots, 184-188, 195-199
Real-valued function, 10
Recourse, 148, 163
Recursive calculation of values of difference equations 192-195
Regularly var ing tail, 138
Relative loce! maxima, 149
Relative local minima, 149
Repficating portfolio, 286
R ep esenting uncertainty with mathematics, 87-89
Rho (sensitivity to interest rate), 292
Riemann integrals, 44-47, 57
Riemann-Stieltjes integrals, 57, 99, 243-245, 272
Right continuous, 18
Risk factors, 173
Risk-free interest rate, 288
Row rank, 71
Row vectors, 61
Runge-Kutta method, 224
Saddle point, 150
Scalar product, 73
Scalars, 60, 76, 93
Scenario optimizations, 174-175
Score (Z-score), 125
Second derivative application, 32-34
Second order approximation, 36
Second-order derivative, 26
Sequence, 11
Sequences of random variables, 120-121
Sets and set operations
basic concepts, 2-6
Borel, 91, 94, 96, 257

elementary properties of sets, 5-6	Sum of variables, 122-124
empty sets, 2, 4-5, 11, 93	Sum rule, 23
infinite non-countable, 9	Supremum, 8
intersection of sets, 5, 11, 91	Survival functions, 134
non-empty, 90	Symmetric Cauchy case, 142
primary, of assets, 13	Symmetric matrix, 65
proper subsets, 3-4	Systems
theory, naive, 2 n1	of homogenous linear difference
union of sets, 4	equations, 202-209
Sharpe ratio, 114	of linear difference equations, 201-202
Sheffer sequence, 130	of linear equations, 59-69
Sign restriction, 157	of ordinary differential equations,
Single-period immunization, 168	216-218
Singular matrix, 67	
Singular value decomposition, 83	Tail index, 138
Six-sigma events, 135	Taylor series, expansion, 34 35, 284
Skew-symmetric matrix, 65	Taylor's theorem, 34
Slowly varying function, 138	Tempered stable distrilutions, 145
Solution of diffusion equation, 232-235	Termwise differentiation, rule of, 21
Square matrices, 63-66	Theta (sensitiviti to time), 292
St. Petersburg paradox, 255	Time scale, 255
Stable distributions, 138, 141-145	Time-depencent variables, 102-103, 106,
Stable inverse Gaussian distributions, 142	248.250, 280, 284
Stable law parameters, 143	Total vaiuation, 19
Standard form, 157	Ttal variation, 19
Standard normal distribution, 125	Tlacking error, 7
State variables, 85, 162-163	Transpose, 72, 75
Stationarity, 89	
Stochastic differential equations, 212 $267-268$	Value at risk (VaR), 107, 127 Variable interest rate, 29-30, 33-34
Black-Scholes option pricing fermula derivation, 286-292	Variables, 10-11. See also Dependent variables; Independent variables;
generalization to severalimensions, 278-280	Random variables; State variables; Time-dependent variables
intuition behind stor hastic differential	auxiliary variable, 163
integrals, 269-2/2	categorical variable, 11
Itô processes, 272-278	control variable, 162
Itô's Lemma derivation, 284-286	decision variables, 157
purpose of, 268-269	distributed variable, 109, 142, 269
solution of, 280-283	dummy variable, 11
Stochastic integrals, 239-267, 269, 271	endogenous variable, 181
Stochastic integration, 240, 242	Gaussian variables, 124-127, 255
Stochastic processes, 100-102	multiple variables, 278
Stochastic programming, 148, 163-164,	new variable, 177, 216
Stratonovich stochastic, 244	numerical variables, 10,12
Strong Laws of Large Numbers (SLLN), 139-140	qualitative variable, 111 real-valued variable, 148-149, 151
Strong solution, 276-277	separable variable, 218
Subexponential distributions, 136-138	single variables, 59

Variables (Continued)
sinusoidal variable, 193, 201
slack variables, 158
underlying variables, 288
univariate variables, 124
unrestricted variables, 158
Variance, 112
Variance-covariance matrix, 65, 125-126, 278
Variation principle, 175
Vector operations, 72-74
Vectors, 60-62

Vega (sensitivity of volatility), 292
Volatility expectations, 290
Weak Laws of Large Numbers (WLLN), 139
Weak solution, 277
Weibull distributions, 138
White noise, 269, 271-272
Wiener process, 239, 263-264, 285, 287
Wiener variable, 265

Zipf's law, 139
Z-score, 125

