
JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

1
An Introduction to

Excel VBA

Excel VBA is probably the most commonly used computational tool in financial
institutions, particularly when a new model is tested at a preliminary stage within a
division. Many traders use Excel VBA to compute their trading strategies. Some data
providers allow users to update information in real time using the Excel format. Excel
VBA thus allows traders and risk managers to implement their solutions conveniently
in real time.

1.1 HOW TO START EXCEL VBA

1.1.1 Introduction

VBA stands for Visual Basic for Application. It is a programming language that
enhances the applicability of MS Excel by enabling the users to instruct Excel to
perform tasks automatically. As most of the programs in this book are written in
VBA, a brief introduction to VBA is provided in this opening chapter. Although
we do not assume that readers have prior programming knowledge, programming
experience in other languages would be helpful. For readers already familiar with
VBA, this chapter serves as a refresher and quick reference. A list of the functions
defined throughout the book can be found at the end of the chapter. These functions
not only improve readability and traceability but also simplify the programs. For
a more thorough understanding of Excel VBA, readers are referred to other books

Handbook of Financial Risk Management: Simulations and Case Studies, First Edition. N.H. Chan and H.Y. Wong.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

1

CO
PYRIG

HTED
 M

ATERIA
L

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

2 AN INTRODUCTION TO EXCEL VBA

Figure 1.1 Set security level.

specializing in the matter. We believe, however, that this chapter is sufficient to allow
a beginner to learn and execute the codes within the book.

MS Excel 2003 is used for illustration in this book. If readers are using another
version of Excel, then they may find some minor differences. Nevertheless, if this
is the first time for a reader to use Excel VBA, then set the macro security level to
Medium or Low and restart Excel to enable the macros:

Click [Tools] → [Macro] → [Security] → [Medium] or [Low] (Fig. 1.1).

MS Excel 2007 users should click the Options button to enable the macros.

1.1.2 Visual Basic Editor

VBE, which stands for Visual Basics Editor, is the environment in which macros are
created, modified and managed. Macros (VBA procedures) are the code components
that automate repetitive Excel tasks. A macro consists of codes that start with the
keyword Sub or Function and end with the keywords End Sub or End Function. These
codes are known as Sub and Function procedures. A module contains one or more
macros, and a project contains one or more modules. A macro developed in VBE

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

HOW TO START EXCEL VBA 3

Figure 1.2 Open VBE.

becomes part of a workbook and is saved at the same time that the workbook is saved.
To open and edit macros in VBE, follow the procedure below.

1. Open VBE: Click [Tools] → [Macro] → [Visual Basic Editor] or press Alt +
F11 (Fig. 1.2).

2. Insert module: In the project window on the left of the VBE, right-click one of
the worksheets → [Insert] → [Module] (Fig. 1.3).

3. Edit in VBE: Type the codes in the code window.

4. Execute the program: In VBE, click [Run] → [Run Sub] and choose the macro
to be compiled. Equivalently, in Excel, click [Tools] → [Macro] → [Macro]
and choose the macro to be compiled.

1.1.3 The Macro Recorder

Excel offers a macro recorder that records the actions of the mouse and/or keyboard
and translates them into VBA codes, thus allowing the designated actions to be
repeated by running the macro again. Although the macro recorder is sometimes
useful, it is unable to generate codes that perform looping, assign variables, or
execute conditional statements, which are fundamental components in simulation. In

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

4 AN INTRODUCTION TO EXCEL VBA

Figure 1.3 Insert modules.

addition, the codes that are generated depend on certain specific settings. To record
a macro, follow the procedure below.

1. Open the macro recorder: Click [Tools] → [Macro] → [Record New Macro].

2. Type the macro name and click OK. Note that the name should begin with a
letter and contain no spaces or special characters (Fig. 1.4).

3. Perform all of the actions to be recorded. Here, type “Hello” in cell A1.

4. Stop the macro recorder: Click [Stop recording macro] button.

Note that when a macro is recorded, MS Excel automatically inserts a VBA module
to keep the recorded codes. To execute the recorded macros or other macros, click
[Tools] → [Macro] → [Macros] or Alt + F8 in Excel. Then, select the designated
macro to implement and click [Run] (Fig. 1.5). To view the codes in the recorded
macro, open VBE and double-click the newly added module (Fig. 1.6).

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

HOW TO START EXCEL VBA 5

Figure 1.4 Name a macro.

Figure 1.6 shows that the recorded macro is a complete Sub procedure. The lines
beginning with the symbol ′ are not executed as they are program comments. A
comment can be added to the code by preceding it with the symbol ′ or by using the
keyword Rem at the beginning of a line.

1.1.4 Insert a Command Button

Instead of having to remember a shortcut key or choosing a macro from a list, it
is more convenient to add a command button to the worksheet to invoke the macro
directly. To insert a command button, follow the following procedure.

1. Click [View] → [Toolbars] → [Visual Basic] (Fig. 1.7).

2. Click Control Toolbox.

3. Click Command Button and put it in the Excel worksheet (Fig. 1.8).

4. Edit the macro: Double-click the command button.

To use a Sub in the module, type call [name of the Sub] inside the macro of the
command button. The common button can also be edited by clicking Design Mode

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

6 AN INTRODUCTION TO EXCEL VBA

Figure 1.5 Run a macro.

Figure 1.6 View the codes.

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

HOW TO START EXCEL VBA 7

Figure 1.7 Insert command button 1.

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

8 AN INTRODUCTION TO EXCEL VBA

Figure 1.8 Insert command button 2.

in the Visual Basic Control Toolbox, which also contains other useful buttons, such
as those for recording a macro and opening VBE.

1.2 VBA PROGRAMMING FUNDAMENTALS

1.2.1 Declaration of Variables

In programming, a variable is the name for a place in computer memory in which
values or objects are stored. To declare a variable in VBA, use the following statement.

Dim varname [As vartype],

where varname is the variable name and vartype is the variable type. A variable
name must begin with a letter and contain only numeric and letter characters and
underscores. Moreover, the variable name should not be a VBA reserved word, such

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

VBA PROGRAMMING FUNDAMENTALS 9

as Sub, Function, End, For, Optional, New, Next, Nothing, Integer, or String. It is
also important to note that VBA does not distinguish between cases.

Different from other programming languages, specifying the variable type [As
vartype] is optional. Other languages require the programmer to define explicitly the
data type of each variable used. Although optional in VBA, if the data type is not
explicitly specified, then execution is slower and memory is used less efficiently.

1.2.2 Types of Variables

Every variable has a type specifying the type of values it stores. Variables can be
classified into four basic types: string data type, date data type, numeric data type,
and variant data type. The string data type is used to store a sequence of characters,
and the date data type can store dates and times separately or simultaneously. The
types that are used most frequently in this book are the numeric and variant data
types.

There are several numeric data types in VBA, the details of which are listed in
Table 1.1. In general, a user should choose the data type that employs the smallest
number of bytes to enhance program efficiency. Doing so may make a big difference
in the computational time needed for simulation.

The variant data type is the most flexible data type in VBA. It stores both numeric
and non-numeric values. VBA will try to convert a variant variable to the data type,
which is able to store the input data. As noted, [As vartype] is optional, and the default
variable type will be Variant.

In addition to normal data, a variant type variable can also store three special types
of values: error code, Empty (which indicates that the variable is empty, and is not
equal to 0, False, an empty string, or another value), and Null (which means that the
variable has not been assigned memory, and is not equal to 0, False, an empty string,
Empty, or another value).

TABLE 1.1 Numeric Data Type

Type Shorthand Range Description

Byte 0 to 255 Unsigned, integer number
Boolean True(−1) or False(0) Truth value
Integer % −32,768 to 32,767 Signed integer number
Long & −2,147,483,648 to Signed integer number

2,147,483,647
Single ! ± 3.402823E38 to Signed single-precision

± 1.401298E-45 floating-point number
Double # ± 1.79769313486231E308 to Signed double-precision

±4.94065645841247E-324 floating-point number
Decimal ±7.922819251426433759E28 Cannot be directly declared

with no decimal point and in VBA; requires the use of
±7.922816251426433759354 a variant data type

with 28 digits behind the
decimal point

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

10 AN INTRODUCTION TO EXCEL VBA

Here are some examples of variable declaration statements:

Dim a As integer

Dim b 'the type will be variant

Dim c As string

c = "It is a string"

Dim Today As Date

Today = #4/7/2011# 'defined using month/day/year format

Dim Noon As Date

Noon = #12:00:00#

1.2.3 Multivariable Declaration

To declare several variables, use the following statement.

Dim a As Integer, b As Integer, c As Integer

Different from other programming languages, attention must be paid to the following
case.

Dim a, b, c As Integer

If the Dim statement is declared as above, then a and b will be declared as variant
types. In this case, the following shorthand can be employed to ensure the cleanliness
and readability of the program.

Dim a#, b#, c As Double

1.2.4 Declaration of Constants

Constants can be declared using a Const statement, of which the following are
examples.

Const interest_rate as Integer = 0.05

Const dividend_yield = 0.03 'without declaring the constant

type

Const option_type as String = "Call"

VBA also defines many intrinsic constants that are used in Sub and Function
procedures.

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

VBA PROGRAMMING FUNDAMENTALS 11

TABLE 1.2 VBA Logical Operators

Operator What it does

Not Performs a logical negation on an expression
And Performs a logical conjunction on two expressions
Or Performs a logical disjunction on two expressions
Xor Performs a logical exclusion on two expressions
Eqv Performs a logical equivalence on two expressions
Imp Performs a logical implication on two expressions

1.2.5 Operators

This subsection introduces assignment operators, mathematical operators, compara-
tive operators, and logical operators.

The equal sign (=) is an assignment operator and is usually used to assign the
value of an expression to a variable or a constant. An expression is a combination of
keywords, operators, variables, and constants that yields a string, number, or object.
For example,

x = 4 * 3

x = x * 5

The result of x is 60.
Familiar mathematical operators include addition(+), multiplication(∗),

division(/), subtraction(−), and exponentiation(∧).
VBA also supports the comparative operators used in Excel formulas: equal to

(=), greater than (>), less than (<), greater than or equal to (>=), less than or
equal to (<=), and not equal to (<>).

Table 1.2 presents the logical operators and their uses in VBA.

1.2.6 User-Defined Data Types

Users may sometimes wish to employ a more complex data type to store data. VBA
provides the Type statement, which allows the creation of a custom data type or a
user-defined data type (UDT). The syntax for creating a UDT is

[Private|Public] Type typename

[elementname As vartype]

[elementname As vartype]

...

End Type

[Private | Public]: (Optional) It is public by default, and indicates whether this
UDT can be declared in all modules. If it is declared to be private, then the

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

12 AN INTRODUCTION TO EXCEL VBA

UDT can be declared only in the same module as that in which the UDT is
defined.

typename: (Required) This is the name of the UDT and follows standard variable
naming conventions.

elementname: (Required) This is the name of the elements within a UDT and also
follows standard variable naming conventions.

vartype: (Required) Unlike the declaration of ordinary variables, the elements
within a UDT must be given a data type, which can be any of the aforementioned
variable types (including Variant) or a UDT.

Declaring a UDT is the same as declaring another built-in variable type. To
reference the sub-elements of the UDT, use the period (.) operator. Finally, the UDT
should be defined at the top of the module before any procedures, as illustrated in the
following example.

Example 1.1 The following code defines a nested UDT which stores the name and
coordinates of a point.

Type Coordinate

x As Double

y As Double

End Type

Type Point

name As String

c As Coordinate

End Type

Sub UDTEx1()

'Declare p1 as UDT Point

Dim p1 as Point

'Assigning the values

p1.name = "A"

p1.c.x = 2.5

p1.c.y = 3

'Print out the values to spreadsheet

Cells(1, 1) = p1.name

Cells(2, 1) = p1.c.x

Cells(3, 1) = p1.c.y

End Sub

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

VBA PROGRAMMING FUNDAMENTALS 13

1.2.7 Arrays and Matrices

An array is a collection of variables of the same type that have a common name. An
array allows access to the variables through the index number, thereby providing a
way to loop through and process a collection of variables of the same type easily.

The following statement declares a one-dimensional (1D) array.

Dim varname(LowerIndex to UpperIndex) As vartype

In this way, a user can access variables with varname(LowerIndex), var-
name(LowerIndex +1), . . . , varname(UpperIndex). If he or she specifies only the
upper index, that is,

Dim varname(UpperIndex) As vartype,

then VBA will assume that 0 is the lower index.
The following statement declares a multidimensional array.

Dim varname(LowerIndex1 to UpperIndex1, LowerIndex2 to _

UpperIndex2,...,LowerIndexN to UpperIndexN) As vartype

For example, to create an array to store the scores of 20 students on three tests,
declare:

Dim Score(1 to 20, 1 to 3) As Double

Here, Score(10, 2) stores the mark of the tenth student on the second test.
Note that both the lower and upper indices must be a constant or a number. If the

user wants to employ a variable in the index, then he or she should use a dynamic
array which has no preset number of elements. The following statement declares a
dynamic array.

Dim varname() As vartype

Before a dynamic array is used, the ReDim statement should be employed to specify
the number of elements in the array. For example,

ReDim varname(LowerIndex to UpperIndex)

In this case, the LowerIndex and UpperIndex can be a variable or a constant. In
VBA, a matrix is essentially a two-dimensional (2D) array, and a column or row
vector is a 1D array. A matrix is an important tool in risk management and finance,
as it deals with high dimensional problems. For example, it can be used in multiple
linear regression. To declare a matrix of size m × n containing real numbers, use the
following statement.

Dim matrixmn() As Double

ReDim matrixmn(1 To m, 1 To n)

In the next subsection, we discuss functions related to matrix manipulation.

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

14 AN INTRODUCTION TO EXCEL VBA

1.2.8 Data Input and Output

One advantage of Excel VBA is that it allows the VBE and the worksheet to be linked
together, affording the user the ability to read and print out the data in the worksheet
and execute programs written in VBE. The following statements are usually used for
input and output, respectively.

'Read in data

Var = Cells(i, j)

'Print out data

Cells(i, j) = Var,

where i and j denote the row and column number of a cell, respectively. For example,
to print out the score of the sixth student on the last test in cell A2 on the worksheet,
write:

Cells(1, 2) = Score(6, 3)

1.2.9 Conditional Statements

When the program needs to follow different instructions in different cases, we use
conditional statements. The two main conditional statements in VBA are If-Then-Else
statements and Select-Case statements.

If-Then-Else Statements

There are two forms of If-then-else statements: single-lined and multi-lined. Only
one statement can be inserted in the single-lined form whereas several can be inserted
in the multi-lined form. With the use of Else statement, the extraneous conditions are
not evaluated when an Else statement is used, which improves efficiency. The syntax
of the two forms is as follows.

'the Else clause is optional

If [condition] Then [statement] (Else [elseStatement])

'... represents other more statements can be included

'these Else clauses are also optional

If [condition] Then

[statement]

...

ElseIf [elseif condition1] Then

[Statement]

...

ElseIf [elseif condition2] Then

[Statement]

...

Else

[Statement]

...

End If

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

VBA PROGRAMMING FUNDAMENTALS 15

In the conditional part of the statement, the users need to specify an expression that
can be evaluated as True or False. Use the comparative operators and logical operators
discussed in Section 1.2.5.

Select-Case Statements

Select-Case statements are useful for choosing among three or more options and
are good alternative to If-Then-Else statements. The syntax for Select-Case is as
follows.

Select Case [testexpression]

Case expressionlist-n

[instructions-n]

...

Case expressionlist-n

[instructions-n]

...

Case Else

[default_instructions]

...

End Select

The most common expressionlist-n is one of the following.

0 to 20
1, 7
Is >= 10

Example 1.2 Suppose that the scores of 20 students on three tests have already been
stored in the array Score(1 to 20, 1 to 3). Write a Sub ensuring that once the student
ID and test number are entered into cells B1 and B2, respectively, the program will
determine whether the student has passed the test (i.e., achieved a score equal to or
higher than 60) and output the result to cell B3.

The corresponding codes for the If-Then-Else statement are:

StudentID = Cells(1, 2)

TestNo = Cells(2, 2)

If Score(StudentID, TestNo) >= 60 Then

Cells(3, 2) = "Pass"

Else

Cells(3, 2) = "Fail"

End If

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

16 AN INTRODUCTION TO EXCEL VBA

The corresponding codes for the Select-Case statement are:

StudentID = Cells(1, 2)

TestNo = Cells(2, 2)

Select Case Score(StudentID, TestNo)

Case Is >= 60

Cells(3, 2) = "Pass"

Case Else

Cells(3, 2) = "Fail"

End Select

1.2.10 Loops

The main purpose of using loops is to allow VBA to perform certain tasks several
times. For-Next loops and Do loops are widely used in VBA programming, with the
former, in particular, frequently used in simulations. The syntax for a For-Next loop is:

For counter = startValue To endValue [Step nStep]

[statements]

[Exit For]

[statements]

Next counter

If the Step nStep part is omitted, then the counter will increase by 1 each time. We
can set nStep to be n and the counter will then increase by n each time.

Example 1.3 Suppose that the scores of 20 students on three tests have already
been displayed in the Range of A1:C20 in the worksheet. To store the scores into the
array Score(1 to 20, 1 to 3), we use the following For-Next statement.

Sub LoopEx1()

Dim Score(1 To 3, 1 To 20) As Double

For i = 1 To 20

For j = 1 To 3

Score(i, j) = Cells(i, j)

Next j

Next i

End Sub

For a Do loop, the syntax is

Do [do_condition]

[statements]

[Exit Do]

[statements]

Loop [loop_condition]

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

VBA PROGRAMMING FUNDAMENTALS 17

Although both do condition and loop condition are optional, only one of them can
be used for a Do loop. If both are omitted, then the user must specify a condition
and call Exit Do to end the loop. Otherwise, the program will not terminate. The
syntax is the same for do condition and loop condition.

While|Until condition

For While, the loop continues as long as condition is True. For Until, the loop breaks
once condition becomes True. If While is used, then the loop is also called the Do
While loop; if Until is used, then it is called the Do Until loop. The use of While or
Until depends solely on the programmer’s preference, as the same task can always
be performed either way. However, putting the condition after Do or Loop depends
on the situation, because if it is put after Loop, then the loop is repeated at least once.
The following example prints 1 to 10 in cells A1 to A10 using different methods.

Example 1.4 Use five different methods to print 1 to 10 in cells A1 to A10.

'For Loop

For i = 1 to 10

Cells(i, 1) = i

Next i

'Do Loop Method 1

i = 1

Do while i <= 10

Cells(i, 1) = i

i = i + 1

Loop

'Do Loop Method 2

i = 1

Do Until i > 10

Cells(i, 1) = i

i = i + 1

Loop

'Do Loop Method 3

i = 1

Do

Cells(i , 1) = i

i = i + 1

Loop while i <= 10

'Do Loop Method 4

i = 1

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

18 AN INTRODUCTION TO EXCEL VBA

Do

Cells(i, 1) = i

i = i + 1

Loop until i > 10

1.3 LINKING VBA TO C++

Even though C++ was developed back in the 1970s, many programmers still use it
today because it is a high-level general-purpose programming language. As many
procedures, functions, and algorithms are still developed in the C++ platform, it is
important to link VBA to C++. In this section, we link VBA to C++ through .dll
(dynamic-link library) by using Visual Studio and calling the functions from VBA.
For further details, please refer to Ch1.3_simplemath.xls. To build .dll via Visual
Studio:

1. Open Visual Studio and select [New Project].

2. Choose [Win32 Project] and enter a name for the project (for example,
SimpleMath).

3. In Application Setting, choose [DLL] and select [Empty project]. Click
[Finish].

4. Choose [Add New Item] to add new .cpp file. Enter a name (for example, main).

5. Add another item with .def suffix (for example, export.def).

6. In main.cpp, enter the corresponding C++ code for a user-defined function. For
example,

double minus(double x, double y){
return x - y;}

7. In export.def, enter the following code.

LIBRARY SimpleMath

EXPORTS

minus

8. Right-click the project file [SimpleMath] in Solution Explorer and choose
[Properties].

9. Click [Configuration Properties] → [C/C++] → [Advanced].

10. Choose [__ stdcall(/Gz)] in [Calling Convention].

11. Click [Configuration Properties] → [Linker] → [Input].

12. Choose [.\export.def] in [Calling Convention]. Click [OK].

13. Build the project OR Click [F7].

14. A .dll file (e.g., SimpleMath.dll) is created in the project directory.

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

SUB PROCEDURES AND FUNCTION PROCEDURES 19

To establish linking with VBA:

1. Place the .dll file and .xls file in the same directory.

2. Open VBA editor, and enter the following code in the module.

PrivateDeclareFunctionSetCurrentDirectoryALib"kernel32"_

(ByVal lpPathName As String) As Long

Private Declare Function minus Lib "simplemath.dll" _

(ByVal a As Double, ByVal b As Double) As Double

Function test(a As Double, b As Double) As Double

SetCurrentDirectoryA Application.ActiveWorkbook.Path

test = minus(a, b)

End Function

3. The function "test" can be called up in Excel Worksheet and VBA.

1.4 SUB PROCEDURES AND FUNCTION PROCEDURES

Writing a program in a systematic manner may necessitate the separation of a large
program into smaller pieces that can be reused and managed easily. In VBA, a
procedure is basically a unit of computer code that performs certain tasks. There are
two types of procedures: a Sub procedure and a Function procedure. A Sub procedure
performs tasks but does not return values, whereas a Function procedure does return
a value.

The syntax that defines a Sub procedure is

[Private|Public] [Static] Sub name ([arglist])

[statements]

End Sub

Private|Public: (Optional) The Sub is Public by default if public or private is
omitted. Public indicates that the Sub is accessible by other Subs or Functions
in all modules, whereas Private indicates that the Sub is accessible only to the
Subs and Functions in the same modules.

Static: (Optional) Static indicates that all local variables of the Sub are preserved
at the end of the Sub. If Static is omitted, then the values of the local variables
will be reset each time the Sub ends. See Example 1.5 for an illustration.

name: (Required) This is the identifier of the Sub and follows standard variable
naming conventions. The name must be unique; it cannot be the same as the
identifier of other Subs, Functions, classes, etc.

arglist: (Optional) This is a list of variables representing parameters that are passed
to the Sub when it is called. Multiple variables are separated by commas. If the

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

20 AN INTRODUCTION TO EXCEL VBA

procedure uses no arguments, then a set of empty parentheses is required. See
Examples 1.6 and 1.7 for an illustration.

statements: (Optional) This refers to any group of statements to be executed within
the Sub.

Example 1.5 The following Sub SubEx1 adds one to the variable x each time it is
called and writes the value of x into cell A1.

Static Sub SubEx1()

Dim x as integer

x = x + 1

Cells(1, 1) = x

End Sub

As the previous value of x is preserved each time Sub SubEx1 is called, cell A1 adds
one instead of always printing 1, as in the case of Static being omitted. The same
effect can be accomplished with the following code.

Sub SubEx1()

Static x as integer

x = x + 1

Cells(1, 1) = x

End Sub

Example 1.6 The following procedure for SubEx2 calculates var1 + var2 and
outputs the result in cell A1.

Sub SubEx2(var1, var2)

Cells(1, 1) = var1 + var2

End Sub

To call the Sub, use one of the two following statements, in which x, y can also be
replaced with other constants or variables.

Call SubEx2(x, y)

SubEx2 x, y

Instead of simply specifying the name of the parameters, each parameter in arglist
can be specified by the following syntax.

[Optional] [ByRef|ByVal] varname [As vartype] [= defaultvalue]

Optional: (Optional) This indicates that the parameter is optional and will take
defaultvalue as its value if it is omitted when the Sub is called.

By Ref | By Val: (Optional) The parameter is passed to ByRef by default. ByRef and
ByVal indicate whether the parameter is passed by address or by value. When
calling with ByRef, the parameter’s memory address is passed to the procedure,
and any changes of the parameter value in the procedure cause changes to the
original parameter. For ByVal, in contrast, a copy of the value of the parameter

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

SUB PROCEDURES AND FUNCTION PROCEDURES 21

is passed and so the original parameter is not affected. See Example 1.7 for an
illustration.

varname: (Required) This is the identifier of the parameters.

vartype: (Optional) The variable type is Variant by default. It is the variable type
of the parameter that has been passed, and can be any of the variable types or
a UDT. If the variable passed when calling the Sub does not match, then the
error message “ByRef/ByVal argument type mismatch” is shown.

defaultvalue: (Optional) This is the value that the parameter takes when the param-
eter is not specified and the Sub is called.

Example 1.7 The following codes demonstrate the difference between ByRef and
ByVal.

Sub SubEx3_Run()

Dim x as integer, y as integer

x = 1

y = 1

Call SubEx3(x, y)

Cells(1, 1) = x

Cells(2, 1) = y

End Sub

Sub SubEx3(ByRef var1 as integer, ByVal var2 as integer)

var1 = var1 + 1

var2 = var2 + 1

End Sub

The foregoing codes can be copied to a module with SubEx3 Run, then run. Cell A1
shows 2, as the change in the value of var1 in SubEx3 actually changes the value of
x . Cell A2 shows 1, as the change in the value of var2 in SubEx3 does not affect the
value of y.

VBA also allows the user to create a Sub to take an arbitrary number of parameters
using ParamArray. When using ParamArray, the parameters can be passed only by
reference and declared as the Variant type. They will be stored in an array with the
parameter’s name. To declare such a Sub, use

Sub SubEx4(ParamArray var())

[statements]

End Sub

Although a Function returns a value, whereas a Sub does not, a Function can also
be used in formulas in the Excel spreadsheet as a user-defined function. The syntax
that defines a Function is

[Private|Public] [Static] Function name ([arglist, ...])

[as vartype] [statements]

End Sub

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

22 AN INTRODUCTION TO EXCEL VBA

For Private|Public, Static, name, and arglist a Function is identical to Sub. The
only difference between the declaration of a Function and a Sub is that the user may
want to define the return type vartype of the Function. The return type is Variant by
default if it is omitted. To return a value for a Function, the user needs to store that
value in a variable with a name identical to the given function name. See Example
1.8 for an illustration. To call a Function, use one of the following statements.

Call FuncName(x, y)

FuncName x, y

z = FuncName(x, y)

Note that the first two are identical because Sub is used. For the third, the return value
will be stored in z.

As Sub cannot return a value, we may need to use global variables or pass the
variables by reference to accomplish certain tasks. Example 1.8 calculates var1 +
var2 and outputs the result into cell A1, which is analogous to Example 1.6 using
Function.

Example 1.8 The following code is to calculate 2 + 3 by calling Function FuncEx4
and output result 5 into cell A1.

Sub SubEx4()

Cells(1, 1) = FuncEx4(2, 3)

End Sub

Function FuncEx4(var1 as integer, var2 as integer) as integer

FuncEx4 = var1 + var2

End Function

1.4.1 VBA Built-In Functions

VBA has a variety of built-in functions that can simplify calculations and operations.
For a complete list of VBA functions, please refer to the VBA Help system. In
VBE, one can type VBA to display a list of VBA functions. Table 1.3 presents
some commonly used VBA built-in mathematical functions and their return values
in descriptive and mathematical forms.

Example 1.9 The following code calculates sin(e2) and outputs the result into
cell A1.

Sub expsquare()

cells(1, 1) = sin(exp(2))

End Sub

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

SUB PROCEDURES AND FUNCTION PROCEDURES 23

TABLE 1.3 Common Built-In Mathematical Functions in VBA

Function Return value Math expression

Abs(x) Absolute value of the x |x |
Atn(x) Arc-tangent of x in radians tan−1 x
Cos(x) Cosine of x cos x
Exp(x) Exponential of x ex

Int(x) The integral part of x [x]
Log(x) Natural logarithm of x ln x
Round(x[, dp]) x rounded to dp decimal place

dp is 0 by default if omitted
Sgn(x) Number indicates the sign of x |x |/x

−1 for x < 0, 0 for x = 0, 1 for x > 0
Sin(x) Sine of x sin x
Sqr(x) Square root of x

√
x

Tan(x) Tangent of x tan x

Remarks If the number is negative, then the function Int returns the first negative
integer that is less than or equal to the number. For example, I nt(−8.3) will return
−9. If a user wishes to return the first negative integer that is greater than or equal to
the number, then he or she should use Fix(−8.3), which will return −8.

Excel VBA also allows users to employ the worksheet functions of Excel, for
example, Average and Stdev. To call the worksheet functions, use one of the following
commands.

Application.FunctionName([arglist])

WorksheetFunction.FunctionName([arglist])

Application.WorksheetFunction.FunctionName([arglist])

For example, to calculate sin−1(0.5), which is not provided in VBA’s built-in function
library but is included in Excel, we can use

x = Application.Asin(0.5),

which will return the value 0.5236 (≈ π/6) and be stored in x . Note that not all of
Excel’s worksheet functions can be used in VBA. For example, worksheet functions
that have an equivalent VBA function, for example, sqrt and sin cannot be used. For
a complete list of Excel’s worksheet functions, please refer to Excel Help.

1.4.2 Multiple Linear Regression

A useful function for finding the ordinary least squares (OLS) estimate after defining
a function in VBA and using the worksheet functions in Excel is given here. Recall
that the general form of a multiple linear regression is given by

E[Y|X] = β0 + β1x1 + · · · + βpx p,

Var(Y|X) = σ 2In.

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

24 AN INTRODUCTION TO EXCEL VBA

In matrix notation, it is written as

Y = Xβ + e,

where

Y =

⎛
⎜⎝

y1
...

yn

⎞
⎟⎠ , X =

⎛
⎜⎝

1 x11 . . . x1p
...

...
...

...
1 xn1 . . . xnp

⎞
⎟⎠ , e =

⎛
⎜⎝

e1
...

en

⎞
⎟⎠ ,β =

⎛
⎜⎜⎜⎝

β0
...

βp

⎞
⎟⎟⎟⎠ .

Also,

E[e] = 0 and Var(e) = σ 2In.

The OLS estimate is given by

β̂ = (XT X)−1XT Y.

Example 1.10 Write a function with matrices X, Y as the parameters which returns
an array containing the OLS estimate with array(i) = βi for i = 0, . . . , p.

'Ordinary Least Squares

Public Function OLS(x As Variant, y As Variant) As Variant

Dim Beta As Variant

Dim i As Integer

With Application

Beta = .MMult(.MInverse(.MMult(.Transpose(x), x)),

.MMult(.Transpose(x), y))

End With

ReDim res(0 To UBound(Beta) - 1) As Double

For i = 0 To UBound(res)

res(i) = Beta(i + 1, 1)

Next i

OLS = res

End Function

Specifically, Table 1.4 provides a list of worksheet functions and VBA built-in func-
tions used in the OLS function.

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

RANDOM NUMBER GENERATION 25

TABLE 1.4 Functions Used in the OLS Function

Function Nature Return value

MMult (x, y) Worksheet function Returns the product of x and y
MInverse (x) Worksheet function Returns the inverse of x
Transpose (x) Worksheet function Returns the transpose of x
UBound (x) VBA built-in function Returns the largest subscript for an array x

1.5 RANDOM NUMBER GENERATION

Monte Carlo simulation requires the use of random numbers. VBA provides a built-in
function, rnd(), that generates a sequence of pseudo-random numbers. Although they
are pseudo-random by nature, they are sufficiently random for general applications
in the sense that they satisfy certain characteristics.

The built-in function rnd() returns a uniform random number between 0 and 1,
and the syntax is:

Randomize

x = Rnd()

See Table 1.5 for a complete description of Randomize and Rnd.
Simulation always involves the generation of random variables. In this section,

the two main approaches to generating random variables are introduced: inverse
transform and the acceptance–rejection method.

1.5.1 Inverse Transform

The inverse transform method makes use of the cumulative density function F(x)
of a random variable X . It is simple and easily implemented, but is limited to those
random variables that have an analytic form for its cumulative density function.

TABLE 1.5 Description for the Random Number Generator

Procedure/Function Description

Randomize([x]) The randomize statement is used to initialize the random number
generator with an optional argument x as the seed. The
system time is used as the seed if x is omitted.

If randomize is not used, then the Rnd function (with no
arguments) uses the same number as a seed the first time
it is called, and thereafter uses the last generated
number as a seed value

Rnd([x]) Return the next random number in the sequence if x
is omitted. If x is not omitted, then Rnd([x]) returns
the same number using x as the seed if x < 0; returns
the most recent generated number if x = 0; and returns
the next random number if x > 0

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

26 AN INTRODUCTION TO EXCEL VBA

TABLE 1.6 Examples of Random Variable Generation Using Inverse Transform

Type Description

Exponential with mean λ X = −λ log(Rnd())
Normal X = Application.NormSI nv(Rnd())

The algorithm of inverse transform is as follows.

1. Generate a standard uniform random variable Y = U(0, 1).

2. The required random variable is given by X = F−1(Y).

Table 1.6 presents examples of random variable generation using inverse
transform.

1.5.2 Acceptance–Rejection Method

The acceptance–rejection method was proposed to address some of the limitations
of inverse transform. In this method, suppose that Y with density function g can be
simulated easily. Use Y as a basis to simulate X ∼ F by first generating Y from g
and then accepting the value with probability f (Y)/(cg(Y)). More specifically, let c
be such that

f (y)

g(y)
≤ c for all y.

Note that g should have tails heavier than those of the target distribution. The algo-
rithm of the acceptance–rejection method is as follows.

1. Generate Y from density g.

2. Generate U ∼ U(0, 1).

3. If U ≤ f (Y)/(cg(Y)), then set X = Y .

4. Otherwise, return to step 1.

Example 1.11 Student-t distribution is similar to normal distribution except that
it has heavier tails. This feature is very useful in calculating Value at Risk. However,
inverse transform is not possible for t distribution, and so the acceptance–rejection
method is used. Simulation of a t distribution with two degrees of freedom is illustrated
here. A double exponential with mean 1 is used as the proposed distribution.

First find the maximum value of f (y)/g(y) via differentiation, and c is found to be
equal to 1.046267 (the maximum occurs at y = 1). The corresponding code for the
acceptance–rejection method is:

Sub tdist()

Dim c As Double, p As Double

Dim Y As Double, X As Double, U1 As Double, U2 As Double

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

RANDOM NUMBER GENERATION 27

c = 2 * Exp(1) / ((2 + 1 ∧ 2) ∧ (3 / 2))

Do

'Generate exp(1)

Y = -Log(Rnd())

'Test if Y is accepted or rejected

U1 = Rnd()

p = 2 * Exp(Y) / (c * ((2 + Y ∧ 2) ∧ (3 / 2)))

Loop Until (U1 < p)

X = Y

'Generate the negative part of the distribution

U2 = Rnd()

If U2 < 0.5 Then

X = −X
End If

End Sub

Generating normal random variables in an efficient way is very important in
the simulation of asset prices. Inverse transform in Excel is not efficient as it is
computationally intensive. A more efficient method of generating normal random
variables is the Box–Muller transform, which states that if U1 and U2 are independent
random variables that are uniformly distributed in the interval (0, 1], then

Z0 =
√

−2 log U1 cos(2πU2)

Z1 =
√

−2 log U1 sin(2πU2)

are independent standard normal random variables. The Box–Muller transform is
coded in the following function rGauss.

Public Function rGauss() As Double

Static store As Boolean, z As Double

If store = True Then

store = False

rGauss = z

Else

z = Sqr(−2 * Log(1 - Rnd())) * Cos(Pi2 * Rnd())

rGauss = z * Tan(Pi2 * Rnd(0))

store = True

End If

End Function

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

28 AN INTRODUCTION TO EXCEL VBA

1.6 LIST OF FUNCTIONS DEFINED IN THE BOOK

To simplify the codes in the application programs, we have defined a number of
constants, UDTs, and functions. This section briefly explains each of the constants,
UDTs, and functions used in this book. For details of the code, please refer to the
Excel files.

1.6.1 Constants

The following are the constants defined in the book.
xCall = 1
xPut = 2
xStraddle = 3

1.6.2 Types

Type BS_PathType
Type Garch_PathType
Type JD_PathType
Type Heston_PathType

1.6.3 General Functions

rGauss()
Parameters: none
Result: Returns a N (0, 1) random variable

rCGauss(LArray as Variant)
Parameters: LArray is the lower triangular matrix of the variance–covariance matrix
of a vector of multivariate normal random variables
Result: Returns an array of normal random variables with LArray as the lower
triangular matrix of the variance–covariance matrix

rGamma(alpha as Long, beta as Double)
Parameters: alpha is the shape parameter and beta is the scale parameter (where
mean = alpha ∗ beta)
Result: Returns a Gamma(alpha, beta) random variable

rInvGamma(alpha as Long, beta as Double)
Parameters: alpha is the shape parameter and beta is the scale parameter
Result: Returns an InverseGamma(alpha, beta) random variable

rBeta(alpha as Long, beta as Long)
Parameters: alpha is the shape parameter and beta is the scale parameter
Result: Returns an Beta(alpha, beta) random variable

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

LIST OF FUNCTIONS DEFINED IN THE BOOK 29

BS(S0 as Double, K as Double, rf as Double, q as Double, sigma as Double, T as
Double, optionType as Integer)
Parameters: S0 is the initial stock price, K is the strike price, rf is the constant
risk-free interest rate, q is the dividend yield, sigma is the volatility, T is the time to
maturity in year, and optionType can be xCall, xPut, or xStraddle
Result: Returns the close-form solution of the option price for Black–Scholes formula

Max(Val1 as Double, Val2 as Double, optional Val3)
Parameters: Val1 is the first number, Val2 is the second number, and Val3 is optional
Result: Returns the maximum of the two (three) numbers

Min(Val1 as Double, Val2 as Double, optional Val3)
Parameters: Val1 is the first number, Val2 is the second number, and Val3 is optional
Result: Returns the minimum of the two (three) numbers

OLS(X as Variant, Y as Variant)
Parameters: X is the predictor matrix and Y is the response matrix
Result: Returns an array (base 0) of the least squares estimate for predictor X and
response Y

Sort(sortArray as Variant, Optional lIndex as Long = −1, Optional rIndex as
Long = −1)
Parameters: sortArray is the array you would like to sort
Result: The array inputted is sorted by the Quicksort algorithm
Remarks: This is in fact a Sub procedure, not a Function procedure

CDecom(VCMatrix as Variant)
Parameters: VCMatrix is a symmetric matrix
Result: Returns the lower triangular matrix of a symmetric matrix VCMatrix after
Cholesky decomposition

Percentile(valArray as Variant, quantile as Double)
Parameters: valArray is the array for which you would like to find out a certain
percentile
Result: Returns the percentile of valArray
Remarks: valArray need not be sorted before using this function

Average(valArray as Variant)
Parameters: valArray is the array for which you want to find the average of its
elements
Result: Returns the average of valArray’s elements

netDays(bDay as Date, eDay as Date)
Parameters: bDay is the beginning date and eDay is the ending date
Result: Returns the number of business days between bDay and eDay (measuring
from the end of bDay to the end of eDay)

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

30 AN INTRODUCTION TO EXCEL VBA

ND(z as Double)
Parameters: z
Result: Returns the density function of N(0, 1) at z

NCD(z as Double)
Parameters: z
Result: Returns the cumulative distribution function (CDF) of N(0, 1) at z

BS_Vega(ByVal S0 as Double, ByVal K as Double, ByVal rf as Double, ByVal q as
Double, ByVal sigma as Double, ByVal T as Double)
Parameters: S0 is the initial stock price, K is the strike price, rf is the constant risk-
free interest rate, q is the dividend yield, sigma is the volatility, and T is the time to
maturity in years
Result: Returns the vega of the option under the Black-Scholes model

ImpVol(ByVal Price as Double, ByVal S0 as Double, ByVal K as Double, ByVal
rf as Double, ByVal q as Double, ByVal T as Double, ByVal optionType as
Integer)
Parameters: Price is the current market price, S0 is the initial stock price, K is the
strike price, rf is the constant risk-free interest rate, q is the dividend yield, T is the
time to maturity in years, and optionType can be xCall, xPut, or xStraddle
Result: Returns the implied volatility of the option under the Black-Scholes
model

1.6.4 Asset Path Simulation Functions

BS_Path(A as BS_PathType)
Parameters: A is a user-defined data type (UDT) variable. Hence, the user has to
specify parameters of the Black-Scholes model. An example can be found on page
74–75
Result: Returns a 2D array of asset path S(0 to m, 1 to n)

BS_CPath(A() as BS_PathType, VCMatrix as Variant)
Parameters: A is the UDT and VCMatrix is the variance-covariance matrix of the
multi-asset Black-Scholes model. Chapter 3.7 presents an example
Result: Returns a 3D array of asset path S(0 to m, 1 to n, 1 to nAsset) according to
the variance-covariance matrix VCMatrix. rf, m, n, dt, T will be read in A(1) only,
and so other A(i) can be left empty with these parameters

Garch_Path(A as Garch_PathType)
Parameters: A is the UDT for the GARCH model. An illustrative example is given
in Chapter 4.4 and Ch4.4_HSBC_RAN_GARCH(1,1).xls.
Result: Returns a 2D array of asset path S(0 to m, 1 to n) under GARCH

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

LIST OF FUNCTIONS DEFINED IN THE BOOK 31

JD_Path(A as JD_PathType, Optional CalculateDrift as Boolean = True)
Parameters: A is an UDT. If Calculate Drift is set as False, then the drift specified in
A will be used; otherwise, the risk-neutral drift will be used. An example using this
function is given in Chapter 4.5
Result: Returns a 2D array of asset path S(0 to m, 1 to n) under the Jump–diffusion
model with method 1.

JDExp_Path(A as JD_PathType, Optional CalculateDrift as Boolean = True)
Parameters: A is an UDT. If Calculate Drift is set as False, then the drift specified in
A will be used; otherwise, the risk-neutral drift will be used. An example using this
function is given in Chapter 4.5
Result: Returns a 2D array of asset path S(0 to m, 1 to n) under the Jump–diffusion
model with method 2; if CalculateDrift is set as False, then the drift specified in A
will be used; otherwise, the risk-neutral drift will be used

HestonVol_Path(A as Heston_PathType)
Parameters: A is an UDT for the Heston model. An example using this function is
given in Chapter 4.3
Result: Returns a 2D array of asset path S(0 to m, 1 to n) under Heston, with moment
matching

HestonVolQE_Path(A as Heston_PathType)
Parameters: A is an UDT for the Heston model. An example using this function is
given in Chapter 4.3
Result: Returns a 2D array of asset path S(0 to m, 1 to n) under Heston, with the QE
scheme

EO_Payoff(S as variant, K as double, optionType as Integer, optional m as
long = −1)
Parameters: S is the stock price, K is the strike price, optionType is the type of options
of either xCall, xPut, or xStraddle. Please refer to Example 3.1 on page 78
Result: Returns an array of the terminal payoff of the vanilla European option expiring
at step m given the price path S

AO_Payoff(S as Variant, rf as Double, dt as Double, K as Double, optionType as
Integer, optional m as long = −1)
Parameters: S is the stock price; rf is the interest rate; dt is the time step size; K is
the strike price, optionType can be xCall, xPut, or xStraddle. Please refer to Example
3.2 on page 85
Result: Returns an array of the terminal payoff of a vanilla American option expiring
at step m

EMartingale(S as Variant, rf as Double, q as Double, dt as Double)
Parameters: S is the original asset price path, rf is the risk-free rate, q is the dividend
yield, and dt is the interval of each step

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

JWBS111-c01 JWBS111-Chan Printer: Yet to Come May 3, 2013 20:27 Trim: 6.125in × 9.25in

32 AN INTRODUCTION TO EXCEL VBA

Result: Returns a 2D array of the asset price path after empirical martingale
correction

1.6.5 Other Functions

ShowStatus(nStep as Long, tStep as Long, sStep as Integer)
Result: Show nStep/tStep in the status bar for each sStep; it can be disabled by setting
HideStatus = True

ResetStatus
Parameters: None
Result: Reset the status bar

1.6.6 Remarks

Option Explicit

To force the declaration of all variables used, include the following as the first
instruction in the VBA module.

Option Explicit

This statement causes the program to stop whenever VBA encounters a vari-
able name that has not been declared. The variable must then be declared before
proceeding.

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om

