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In this chapter we review three math topics—logarithms, combinatorics, and geo-
metric series—and one financial topic, discount factors. Emphasis is given to the 

specific aspects of these topics that are most relevant to risk management.

Logarithms

In mathematics, logarithms, or logs, are related to exponents, as follows:

	 a x a blogb x= ⇔ = � (1.1)

We say, “The log of a, base b, equals x, which implies that a equals b to the x and vice 
versa.” If we take the log of the right-hand side of Equation 1.1 and use the identity 
from the left-hand side of the equation, we can show that:

	 logb(bx) = logb a = x
� (1.2)

logb(bx) = x

Taking the log of bx effectively cancels out the exponentiation, leaving us with x.
An important property of logarithms is that the logarithm of the product of two 

variables is equal to the sum of the logarithms of those two variables. For two vari-
ables, X and Y:

	 XY X Ylog ( ) log logb b b= + � (1.3)

Similarly, the logarithm of the ratio of two variables is equal to the difference of 
their logarithms:

	
X
Y

X Ylog log logb b b= − � (1.4)

If we replace Y with X in Equation 1.3, we get:

	 X Xlog ( ) 2logb b
2 = � (1.5)

We can generalize this result to get the following power rule:

	 X n Xlog ( ) logb
n

b= � (1.6)
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2� Mathematics and Statistics for Financial Risk Management

In general, the base of the logarithm, b, can have any value. Base 10 and base 2 
are popular bases in certain fields, but in many fields, and especially in finance, e, 
Euler’s number, is by far the most popular. Base e is so popular that mathematicians 
have given it its own name and notation. When the base of a logarithm is e, we refer 
to it as a natural logarithm. In formulas, we write:

	 a x a eln( ) x= ⇔ = � (1.7)

From this point on, unless noted otherwise, assume that any mention of loga-
rithms refers to natural logarithms.

Logarithms are defined for all real numbers greater than or equal to zero. Ex-
hibit 1.1 shows a plot of the logarithm function. The logarithm of zero is negative 
infinity, and the logarithm of one is zero. The function grows without bound; that is, 
as X approaches infinity, the ln(X) approaches infinity as well.

Log Returns

One of the most common applications of logarithms in finance is computing log 
returns. Log returns are defined as follows:

	 rt ≡ ln(1 + Rt)  where  R
P P
Pt

t t

t

1

1
=

− −

−
� (1.8)

Exhibit 1.1  Natural Logarithm
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Some Basic Math� 3

Here rt is the log return at time t, Rt is the standard or simple return, and Pt is the 
price of the security at time t. We use this convention of capital R for simple returns 
and lowercase r for log returns throughout the rest of the book. This convention is 
popular, but by no means universal. Also, be careful: Despite the name, the log return 
is not the log of Rt, but the log of (1 + Rt).

For small values, log returns and simple returns will be very close in size. A sim-
ple return of 0% translates exactly to a log return of 0%. A simple return of 10% 
translates to a log return of 9.53%. That the values are so close is convenient for 
checking data and preventing operational errors. Exhibit 1.2 shows some additional 
simple returns along with their corresponding log returns.

To get a more precise estimate of the relationship between standard returns and 
log returns, we can use the following approximation:1

	 r R R
1
2

2≈ − � (1.9)

As long as R is small, the second term on the right-hand side of Equation 1.9 will 
be negligible, and the log return and the simple return will have very similar values.

Compounding

Log returns might seem more complex than simple returns, but they have a number 
of advantages over simple returns in financial applications. One of the most useful 
features of log returns has to do with compounding returns. To get the return of a 
security for two periods using simple returns, we have to do something that is not 
very intuitive, namely adding one to each of the returns, multiplying, and then sub-
tracting one:

	 R
P P
P

R R(1 )(1 ) 1t
t t

t
t t2,

2

2
1, 1, 1=

−
= + + −−

−
− � (1.10)

Here the first subscript on R denotes the length of the return, and the second sub-
script is the traditional time subscript. With log returns, calculating multiperiod re-
turns is much simpler; we simply add:

	 r r rt t t2, 1, 1, 1= + − � (1.11)

Exhibit 1.2  Log Returns and Simple Returns

R ln(1 + R)

  1.00%   1.00%

  5.00%   4.88%

10.00%   9.53%

20.00% 18.23%

1 This approximation can be derived by taking the Taylor expansion of Equation 1.8 around 
zero. Though we have not yet covered the topic, for the interested reader a brief review of 
Taylor expansions can be found in Appendix B.
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4� Mathematics and Statistics for Financial Risk Management

By substituting Equation 1.8 into Equation 1.10 and Equation 1.11, you can see 
that these definitions are equivalent. It is also fairly straightforward to generalize this 
notation to any return length.

Sample Problem

Question:
Using Equation 1.8 and Equation 1.10, generalize Equation 1.11 to returns 

of any length.

Answer:

R
P P
P

P
P

P
P

P
Pn t

t t n

t n

t

t n

t

t

t

t
, = − = − =−

− − −

−

−
1

1

1

2

. . . PP
P

R R R R

t n

t n

n t t t

− +

−

−

−

= + + +

1

1 1 1

1

1 1 1, , ,( )( ) (. . . 11 1

1 1 1

1

1 1 1 1

,

, , ,

)

( ) ( )( ) (

t n

n t t tR R R

− +

−

−

+ = + + . . . ++
= + + +

− +

− − +

R

r r r r
t n

n t t t t n

1 1

1 1 1 1 1

,

, , , ,

)
. . .

To get to the last line, we took the logs of both sides of the previous equa-
tion, using the fact that the log of the product of any two variables is equal to 
the sum of their logs, as given in Equation 1.3.

Limited Liability

Another useful feature of log returns relates to limited liability. For many financial 
assets, including equities and bonds, the most that you can lose is the amount that 
you’ve put into them. For example, if you purchase a share of XYZ Corporation for 
$100, the most you can lose is that $100. This is known as limited liability. Today, 
limited liability is such a common feature of financial instruments that it is easy to 
take it for granted, but this was not always the case. Indeed, the widespread adop-
tion of limited liability in the nineteenth century made possible the large publicly 
traded companies that are so important to our modern economy, and the vast finan-
cial markets that accompany them.

That you can lose only your initial investment is equivalent to saying that the 
minimum possible return on your investment is −100%. At the other end of the 
spectrum, there is no upper limit to the amount you can make in an investment. The 
maximum possible return is, in theory, infinite. This range for simple returns, −100% 
to infinity, translates to a range of negative infinity to positive infinity for log returns.

	
R r

R r

100%min min

max max

= − ⇒ = −∞
= +∞ ⇒ = +∞

� (1.12)

As we will see in the following chapters, when it comes to mathematical and 
computer models in finance it is often much easier to work with variables that are 
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Some Basic Math� 5

unbounded—that is, variables that can range from negative infinity to positive 
infinity. This makes log returns a natural choice for many financial models.

Graphing Log Returns

Another useful feature of log returns is how they relate to log prices. By rearranging 
Equation 1.10 and taking logs, it is easy to see that:

	 r p pt t t 1= − − � (1.13)

where pt is the log of Pt, the price at time t. To calculate log returns, rather than 
taking the log of one plus the simple return, we can simply calculate the logs of the 
prices and subtract.

Logarithms are also useful for charting time series that grow exponentially. 
Many computer applications allow you to chart data on a logarithmic scale. For an 
asset whose price grows exponentially, a logarithmic scale prevents the compression 
of data at low levels. Also, by rearranging Equation 1.13, we can easily see that the 
change in the log price over time is equal to the log return:

	 p p p rt t t t1∆ = − =− � (1.14)

It follows that, for an asset whose return is constant, the change in the log price 
will also be constant over time. On a chart, this constant rate of change over time 
will translate into a constant slope. Exhibits 1.3 and 1.4 both show an asset whose 
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Exhibit 1.3  Normal Prices
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6� Mathematics and Statistics for Financial Risk Management

price is increasing by 20% each year. The y-axis for the first chart shows the price; 
the y-axis for the second chart displays the log price.

For the chart in Exhibit 1.3, it is hard to tell if the rate of return is increasing or 
decreasing over time. For the chart in Exhibit 1.4, the fact that the line is straight is 
equivalent to saying that the line has a constant slope. From Equation 1.14 we know 
that this constant slope is equivalent to a constant rate of return.

In Exhibit 1.4, we could have shown actual prices on the y-axis, but having 
the log prices allows us to do something else. Using Equation 1.14, we can eas-
ily estimate the average return for the asset. In the graph, the log price increases 
from approximately 4.6 to 6.4 over 10 periods. Subtracting and dividing gives us 
(6.4 − 4.6)/10 = 18%. So the log return is 18% per period, which—because log re-
turns and simple returns are very close for small values—is very close to the actual 
simple return of 20%.

Continuously Compounded Returns

Another topic related to the idea of log returns is continuously compounded returns. 
For many financial products, including bonds, mortgages, and credit cards, interest 
rates are often quoted on an annualized periodic or nominal basis. At each payment 
date, the amount to be paid is equal to this nominal rate, divided by the number of 
periods, multiplied by some notional amount. For example, a bond with monthly 
coupon payments, a nominal rate of 6%, and a notional value of $1,000 would pay 
a coupon of $5 each month: (6% × $1,000)/12 = $5.
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Exhibit 1.4  Log Prices
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Some Basic Math� 7

How do we compare two instruments with different payment frequencies? Are 
you better off paying 5% on an annual basis or 4.5% on a monthly basis? One solu-
tion is to turn the nominal rate into an annualized rate:

	 R
R

n
1 1

n

Annual
Nominal= + − � (1.15)

where n is the number of periods per year for the instrument.
If we hold RAnnual constant as n increases, RNominal gets smaller, but at a decreas-

ing rate. Though the proof is omitted here, using L’Hôpital’s rule, we can prove 
that, at the limit, as n approaches infinity, RNominal converges to the log rate. As n 
approaches infinity, it is as if the instrument is making infinitesimal payments on a 
continuous basis. Because of this, when used to define interest rates the log rate is 
often referred to as the continuously compounded rate, or simply the continuous 
rate. We can also compare two financial products with different payment periods by 
comparing their continuous rates.

Sample Problem

Question:
You are presented with two bonds. The first has a nominal rate of 20% 

paid on a semiannual basis. The second has a nominal rate of 19% paid on 
a monthly basis. Calculate the equivalent continuously compounded rate for 
each bond. Assuming both bonds can be purchased at the same price, have the 
same credit quality, and are the same in all other respects, which is the better 
investment?

Answer:
First, we compute the annual yield for both bonds:

R

R

1
20%
2

1 21.00%

1
19%
12

1 20.75%

1, Annual

2

2, Annual

12

= + − =

= + − =

Next, we convert these annualized returns into continuously compounded 
returns:

r R

r R

ln(1 ) 19.06%

ln(1 ) 18.85%
1 1, Annual

2 2, Annual

= + =

= + =

All other things being equal, the first bond is a better investment. We 
could base this on a comparison of either the annual rates or the continuously 
compounded rates.
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8� Mathematics and Statistics for Financial Risk Management

Combinatorics

In elementary combinatorics, one typically learns about combinations and permuta-
tions. Combinations tell us how many ways we can arrange a number of objects, 
regardless of the order, whereas permutations tell us how many ways we can arrange 
a number of objects, taking into account the order.

As an example, assume we have three hedge funds, denoted X, Y, and Z. We 
want to invest in two of the funds. How many different ways can we invest? We can 
invest in X and Y, X and Z, or Y and Z. That’s it.

In general, if we have n objects and we want to choose k of those objects, the 
number of combinations, C(n, k), can be expressed as:

	 C n k
n

k
n

k n k
( , )

!
!( )!

= =
−

� (1.16)

where n! is n factorial, such that:

	 n
n n n

n
n

!
1

( 1)( 2). . .1
     0

0
=

− −
=
>

� (1.17)

In our example with the three hedge funds, we would substitute n = 3 and k = 2 to 
get three possible combinations.

What if the order mattered? What if instead of just choosing two funds, we 
needed to choose a first-place fund and a second-place fund? How many ways could 
we do that? The answer is the number of permutations, which we express as:

	 P n k
n

n k
( , )

!
( )!

=
−

� (1.18)

For each combination, there are k! ways in which the elements of that combina-
tion can be arranged. In our example, each time we choose two funds, there are two 
ways that we can order them, so we would expect twice as many permutations. This 
is indeed the case. Substituting n = 3 and k = 2 into Equation 1.18, we get six permu-
tations, which is twice the number of combinations computed previously.

Combinations arise in a number of risk management applications. The binomial 
distribution, which we will introduce in Chapter 4, is defined using combinations. 
The binomial distribution, in turn, can be used to model defaults in simple bond 
portfolios or to backtest value at risk (VaR) models, as we will see in Chapter 7.

Combinations are also central to the binomial theorem. Given two variables, x 
and y, and a positive integer, n, the binomial theorem states:

	 ( )x y
n

k
x yn n k k

k

n

+ = −

=
∑

0

� (1.19)

For example:

	 x y x x y xy y( ) 3 33 3 2 2 3+ = + + + � (1.20)

The binomial theorem can be useful when computing statistics such as variance, 
skewness, and kurtosis, which will be discussed in Chapter 3.
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Some Basic Math� 9

Discount Factors

Most people have a preference for present income over future income. They would 
rather have a dollar today than a dollar one year from now. This is why banks charge 
interest on loans, and why investors expect positive returns on their investments. 
Even in the absence of inflation, a rational person should prefer a dollar today to a 
dollar tomorrow. Looked at another way, we should require more than one dollar in 
the future to replace one dollar today.

In finance we often talk of discounting cash flows or future values. If we are 
discounting at a fixed rate, R, then the present value and future value are related as 
follows:

	 V
V
R(1 )t
t n

n
=

+
+ � (1.21)

where Vt is the value of the asset at time t and Vt + n is the value of the asset at time 
t + n. Because R is positive, Vt will necessarily be less than Vt + n. All else being equal, 
a higher discount rate will lead to a lower present value. Similarly, if the cash flow 
is further in the future—that is, n is greater—then the present value will also be 
lower.

Rather than work with the discount rate, R, it is sometimes easier to work with 
a discount factor. In order to obtain the present value, we simply multiply the future 
value by the discount factor:

	 V
R

V Vt

n

t n
n

t n=
+

=+ +
1

1
δ � (1.22)

Because the discount factor δ  is less than one, Vt will necessarily be less than 
Vt + n. Different authors refer to δ  or δn as the discount factor. The concept is the 
same, and which convention to use should be clear from the context.

Geometric Series

In the following two subsections we introduce geometric series. We start with series 
of infinite length. It may seem counterintuitive, but it is often easier to work with se-
ries of infinite length. With results in hand, we then move on to series of finite length 
in the second subsection.

Infinite Series

The ancient Greek philosopher Zeno, in one of his famous paradoxes, tried to prove 
that motion was an illusion. He reasoned that in order to get anywhere, you first 
had to travel half the distance to your ultimate destination. Once you made it to the 
halfway point, though, you would still have to travel half the remaining distance. 
No matter how many of these half journeys you completed, there would always be 
another half journey left. You could never possibly reach your destination.
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10� Mathematics and Statistics for Financial Risk Management

While Zeno’s reasoning turned out to be wrong, he was wrong in a very profound 
way. The infinitely decreasing distances that Zeno struggled with foreshadowed 
calculus, with its concept of change on an infinitesimal scale. Also, infinite series of a 
variety of types turn up in any number of fields. In finance, we are often faced with 
series that can be treated as infinite. Even when the series is long but clearly finite, the 
same basic tools that we develop to handle infinite series can be deployed.

In the case of the original paradox, we are basically trying to calculate the 
following summation:

	 S = + + +1
2

1
4

1
8

. . . � (1.23)

What is S equal to? If we tried the brute force approach, adding up all the terms, 
we would literally be working on the problem forever. Luckily, there is an easier way. 
The trick is to notice that multiplying both sides of the equation by ½ has the exact 
same effect as subtracting ½ from both sides:

Multiply both sides by ½: Subtract ½ from both sides:

S

S

= + + +

= + + +

1
2

1
4

1
8

1
2

1
4

1
8

1
16

. . .

. . .

S

S

= + + +

− = + + +

1
2

1
4

1
8

1
2

1
4

1
8

1
16

. . .

. . .

The right-hand sides of the final line of both equations are the same, so the left-
hand sides of both equations must also be equal. Taking the left-hand sides of both 
equations, and solving:

	

S S

S S

S

S

1
2

1
2

1
2

1
2

1
2

1
2
1

− =

− =

=

=

� (1.24)

The fact that the infinite series adds up to one tells us that Zeno was wrong. 
If we keep covering half the distance but do it an infinite number of times, eventu-
ally we will cover the entire distance. The sum of all the half trips equals one full 
trip.

To generalize Zeno’s paradox, assume we have the following series:

	 S i

i

=
=

∞

∑δ
1

� (1.25)

In Zeno’s case, δ  was ½. Because the members of the series are all powers of the 
same constant, we refer to these types of series as geometric series. As long as |δ | is 
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Some Basic Math� 11

less than one, the sum will be finite and we can employ the same basic strategy as 
before, this time multiplying both sides by δ .

	

δS

S S

S

S

i

i

=

= −
= −

=
−

+

=

∞

∑δ

δ δ
δ δ

δ
δ

1

1

1

1

( )

� (1.26)

Substituting ½ for δ , we see that the general equation agrees with our previously 
obtained result for Zeno’s paradox.

Before deriving Equation 1.26, we stipulated that |δ | had to be less than one. 
The reason that |δ | has to be less than one may not be obvious. If δ  is equal to one, 
we are simply adding together an infinite number of ones, and the sum is infinite. In 
this case, even though it requires us to divide by zero, Equation 1.26 will produce 
the correct answer.

If δ  is greater than one, the sum is also infinite, but Equation 1.26 will give you 
the wrong answer. The reason is subtle. If δ  is less than one, then δ∞ converges to 
zero. When we multiplied both sides of the original equation by δ , in effect we added 
a δ∞ + 1 term to the end of the original equation. If |δ | is less than one, this term is 
zero, and the sum is unaltered. If |δ | is greater than one, however, this final term is 
itself infinitely large, and we can no longer assume that the sum is unaltered. If this 
is at all unclear, wait until the end of the following section on finite series, where we 
will revisit the issue. If δ  is less than −1, the series will oscillate between increasingly 
large negative and positive values and will not converge. Finally, if δ  equals −1, the 
series will flip back and forth between −1 and +1, and the sum will oscillate between 
−1 and 0.

One note of caution: In certain financial problems, you will come across geo-
metric series that are very similar to Equation 1.25 except the first term is one, not 
δ . This is equivalent to setting the starting index of the summation to zero (δ0 = 1). 
Adding one to our previous result, we obtain the following equation:

	 S
i

i= =
−=

∞

∑
0

1
1

δ
δ

� (1.27)

As you can see, the change from i = 0 to i = 1 is very subtle, but has a very real 
impact on the sum.

Sample Problem

Question:
A perpetuity is a security that pays a fixed coupon for eternity. Determine 

the present value of a perpetuity that pays a $5 coupon annually. Assume a 
constant 4% discount rate.
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12� Mathematics and Statistics for Financial Risk Management

Finite Series

In many financial scenarios—including perpetuities and discount models for 
stocks and real estate—it is often convenient to treat an extremely long series of 
payments as if it were infinite. In other circumstances we are faced with very long 
but clearly finite series. In these circumstances the infinite series solution might 
provide us with a good approximation, but ultimately we will want a more precise 
answer.

The basic technique for summing a long but finite geometric series is the same 
as for an infinite geometric series. The only difference is that the terminal terms no 
longer converge to zero.

	

S

S S

S

i

i

n

i

i

n
n

n

=

= = − +

= −
−

=

−

+

=

−

∑

∑

δ

δ δ δ δ

δ
δ

0

1

1

0

1
0

1
1

� (1.28)

We can see that for |δ | less than one, as n approaches infinity δn goes to zero, and 
Equation 1.28 converges to Equation 1.27.

In finance, we will mostly be interested in situations where |δ | is less than one, 
but Equation 1.28, unlike Equation 1.27, is still valid for values of |δ | greater than 
one (check this for yourself). We did not need to rely on the final term converging to 
zero this time. If δ  is greater than one, and we substitute infinity for n, we get:

	 S = −
−

= − ∞
−

= −∞
−

= ∞
∞1

1
1
1 1

δ
δ δ δ

� (1.29)

For the last step, we rely on the fact that (1 − δ) is negative for δ  greater than 
one. As promised in the preceding subsection, for δ  greater than one, the sum of the 
infinite geometric series is indeed infinite.

Answer:

V

V

i
i

i

i

=

= =

=

∞

=

∞

∑

∑

$
( . )

$
.

$ .

5

1 04

5
1

1 04
5

1
1

1

1

004

1
1

1 04

5
1

1 04 1
5 25

125

−
=

−
=

=

⋅
.

$
.

$

$V
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Some Basic Math� 13

Sample Problem

Question:
What is the present value of a newly issued 20-year bond with a notional 

value of $100 and a 5% annual coupon? Assume a constant 4% discount rate 
and no risk of default.

Answer:
This question utilizes discount factors and finite geometric series.
The bond will pay 20 coupons of $5, starting in a year’s time. In addition, 

the notional value of the bond will be returned with the final coupon payment 
in 20 years. The present value, V, is then:

V
$5

(1.04)
$100

(1.04)
$5

1
(1.04)

$100
(1.04)i

i
i

i
1

20

20
1

20

20∑ ∑= + = +
= =

We start by evaluating the summation, using a discount factor of  
δ  = 1/1.04 ≈ 0.96:

S i

i
i=

( )
= = = + + + +1

1 04

1
1 04

2 19 20

. .
δ δ δ δ δ. . .

iiii

S

S S

−==
∑∑∑

= + + + +
=

1

20

1

20

1

20

2 3 20 21δ δ δ δ δ
δ

. . .

−− +
− = −

= −
−

=

δ δ
δ δ δ

δ δ
δ

21

21

21

1

1
13 59

S

S

S

( )

.

Inserting this result into the initial equation, we obtain our final result:

V $5 13.59
$100

(1.04)
$113.59

20
= × + =

Note that the present value of the bond, $113.59, is greater than the no-
tional value of the bond, $100. In general, if there is no risk of default and the 
coupon rate on the bond is higher than the discount rate, then the present value 
of the bond will be greater than the notional value of the bond.

When the price of a bond is less than the notional value of the bond, 
we say that the bond is selling at a discount. When the price of the bond is 
greater than the notional value, as in this example, we say that it is selling at a 
premium. When the price is exactly the same as the notional value we say that 
it is selling at par.
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14� Mathematics and Statistics for Financial Risk Management

Problems

	 1.	Solve for y, where:
a.	 y = ln(e5)
b.	 y = ln(1/e)
c.	 y = ln(10e)

	 2.	The nominal monthly rate for a loan is quoted at 5%. What is the equivalent 
annual rate? Semiannual rate? Continuous rate?

	 3.	Over the course of a year, the log return on a stock market index is 11.2%. The 
starting value of the index is 100. What is the value at the end of the year?

	 4.	You have a portfolio of 10 bonds. In how many different ways can exactly two 
bonds default? Assume the order in which the bonds default is unimportant.

	 5.	What is the present value of a perpetuity that pays $100 per year? Use an annual 
discount rate of 4%, and assume the first payment will be made in exactly one 
year.

	 6.	ABC stock will pay a $1 dividend in one year. Assume the dividend will continue 
to be paid annually forever and the dividend payments will increase in size at a 
rate of 5%. Value this stream of dividends using a 6% annual discount rate.

	 7.	What is the present value of a 10-year bond with a $100 face value, which pays 
a 6% coupon annually? Use an 8% annual discount rate.

	 8.	Solve for x, where e 10ex = .

	 9.	Calculate the value of the following summation: ( 0.5)
i

i

0

9

∑ −
=

	10.	The risk department of your firm has 10 analysts. You need to select four ana-
lysts to serve on a special audit committee. How many possible groupings of 
four analysts can be put together?

	11.	What is the present value of a newly issued 10-year bond with a notional value 
of $100 and a 2% annual coupon? Assume a constant 5% annual discount rate 
and no risk of default.
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