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CHAPTER 1
Measuring Systemic Risk:

Structural Approaches
Raimund M. Kovacevic

ISOR, Department of Statistics and OR,
University of Vienna, Austria

Georg Ch. Pflug
ISOR and IIASA, Laxenburg

“Systemic risks are developments that threaten the stability of the
financial system as a whole and consequently the broader
economy, not just that of one or two institutions.”

—Ben Bernanke, ex-chairman of the US Federal Reserve Bank.

The global financial crisis of 2007–2008, often considered as the worst
financial crisis since the Great Depression of the 1930s, resulted in a

change of paradigms in the financial and banking sector. These crisis years
saw collapses of large financial institutions, bailouts of banks by govern-
ments, and declines of stock markets. Triggered by the U.S. housing bubble,
which itself was caused by giving easy access to loans for subprime bor-
rowers, financial distress spread over the banking sector and led to failure
of key businesses and to the 2008–2012 global recession. Finally, this also
contributed to the European sovereign-debt crisis, with lots of aftereffects in
our present times.
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4 SUPERVISORY RISK MANAGEMENT

Uncertainties about bank solvency, declines in credit availability,
and reduced investor confidence had an impact on global stock markets.
Governments responded with fiscal measures and institutional bailouts,
which in the long term resulted in extreme public debts and necessary tax
increases.

This negative experience demonstrates that the economy as a whole,
but especially the financial sector is subject to risks, which are grounded
in the interdependencies between the different economic actors and not in
the performance of individual actors. This type of risk is generally called
systemic risk. While aspects of systemic risk (e.g., bank run and contagion)
were always an issue in discussions about the financial system, the recent
crises have increased the interest in the topic, not only in academic circles,
but also among regulators and central banks.

SYSTEMIC RISK: DEFINITIONS

If one aims at measuring—and in a further step managing and mitigating—
systemic risk, it is important to start with a definition. However, despite the
consent that systemic risk is an important topic, which is reflected by an
increasing number of related papers and technical reports, there is still not
a single generally accepted definition.

As a first step, one should distinguish between systemic and systematic
risk. Systematic risks are aggregate (macroeconomic) risks that cannot be
reduced by hedging and diversification. Systemic risk, on the other hand, is
a different notion. It refers to the risk of breakdown or at least major dys-
function of financial markets. The Group of Ten (2001) gave the following,
often cited definition:

Systemic financial risk is the risk that an event will trigger a loss of eco-
nomic value or confidence in, and attendant increases in uncertainly about,
a substantial portion of the financial system that is serious enough to quite
probably have significant adverse effects on the real economy. Systemic risk
events can be sudden and unexpected, or the likelihood of their occurrence
can build up through time in the absence of appropriate policy responses.
The adverse real economic effects from systemic problems are generally seen
as arising from disruptions to the payment system, to credit flows, and from
the destruction of asset values.

This formulation describes many aspects related to systemic risk but can
hardly be called a definition in the technical sense, as it is very broad and
hard to quantify. In addition, it seems to confuse cause (confidence) and
consequence (breakdown).
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Measuring Systemic Risk: Structural Approaches 5

As an alternative, Kaufmann and Scott (2003) introduced the following
definition:

Systemic risk refers to the risk or probability of breakdowns in an entire
system, as opposed to breakdowns in individual parts or components, and
is evidenced by co-movements among most or all the parts.

In similar manner, but naming the cause and again considering larger
consequences, the European Central Bank (2004) defines systemic risk as
follows:

The risk that the inability of one institution to meet its obligations when
due will cause other institutions to be unable to meet their obligations when
due. Such a failure may cause significant liquidity or credit problems and,
as a result, could threaten the stability of or confidence in markets.

All discussed definitions focus on the banking or financial system as a
whole, and relate systemic risk to the interconnectedness within the system.
Often, they stress the risk of spillovers from the financial sector to the real
economy and the associated related costs. This effect is emphasized even
more after the financial crisis as described in the following definition of sys-
temic risk from Adrian and Brunnermeier (2009):

The risk that institutional distress spreads widely and distorts the supply of
credit and capital to the real economy.

A similar definition can be found in Acharya et al. 2009.
Given the described diversity of definitions, which are similar but also

different with respect to their focus, it is hard to develop universally accepted
measures for systemic risk. Different definitions refer to different important
nuances of systemic risk, which means that on the operational level a robust
framework for monitoring andmanaging systemic risk should involve a vari-
ety of risk measures related to these different aspects. See Hansen (2012)
for a deeper discussion of the basic difficulties in defining and identifying
systemic risk.

We will focus on the first part of the definition by Kaufmann and Scott
(2003), which summarizes the most important aspect of systematic risk in
financial systems, without addressing more general economic aspects. Such
an approach could be seen as “systemic risk in the narrow sense” and we
state it (slightly modified) as follows:

Systemic risk is the risk of breakdowns in an entire system, as opposed
to breakdowns in individual parts or components.

Three issues have to be substantiated, if one wants to apply such a defi-
nition in concrete situations: system, breakdowns, and risk.
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System

In financial applications, the focus lies on parts of the financial system (like
the banking system, insurance, hedge funds) or the financial system as a
whole. Any analysis has to start with describing the agents (e.g., banks in
the banking system) within the analyzed system. This involves their assets
and liabilities and the main risk factors related to profit and loss.

For a systemic view, it is important that the agents are not isolated enti-
ties at all. Systematic risk can be modeled by joint risk factors, influencing all
profit and losses. Systemic risk in financial systems usually comes by mutual
debt between the entities and the related leverage.

Breakdowns

In single-period models, breakdown is related to bankruptcy in a technical
sense—that is, that the asset value of an agent at the end of the period does
not reach a certain level (e.g., is not sufficient to pay back the agents debt). A
lower boundary than debt can be used to reflect the fact that confidence into
a bank might fade away even before bankruptcy, which severely reduces
confidence between banks. In a systemic view, it is not sufficient to look
at breakdowns of individual agents: Relevant are events that lead to the
breakdown of more than one agent.

Risk

Risk is the danger that unwanted events (here, breakdowns) may happen
or that developments go in an unintended direction. Quantifiable risk is
described by distributions arising from risk. For financial systems this may
involve the probability of breakdowns or the distribution of payments nec-
essary to bring back asset values to an acceptable level. Risk measures sum-
marize favorable or unfavorable properties of such distributions.

It should bementioned that such an approach assumes that a good distri-
butional model for the relevant risk factors can be formulated and estimated.
During this chapter, we will stick to exactly this assumption. However, it is
clear that in practice it is often difficult to come up with good models, and
data availability might be severely restricted. Additional risk (model risk) is
related to the quality of the used models and estimations; see Hansen (2012)
for a deeper discussion of this point.

FROM STRUCTURAL MODELS TO SYSTEMIC RISK

Structural models for default go back toMerton (2009) and build on the idea
that default of a firm happens if the firm’s assets are insufficient to cover
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contractual obligations (liabilities). Simple models such as Merton (2009)
start by modeling a single firm in the framework of the Black–Scholes option
pricing model, whereas more complex models extend the framework to mul-
tivariate formulations, usually based on correlations between the individual
asset values. A famous example is Vasicek’s asymptotic single factor model
(see Vasicek 1987; 1991; and 2002), which is very stylized but leads to a
closed-form solution.

In most structural default models, it is not possible to calculate the port-
folio loss explicitly; hence, Monte Carlo simulation is an important tool
for default calculations. Even then, the models usually make simplifying
assumptions.

Consider a system consisting of k economic entities (e.g., banks), and
let A1(t),A2(t),… ,Ak(t) denote the asset processes—that is, the asset values
at time t for the individual entities. Furthermore, for each entity i a limit Di,
the distress barrier, defines default in the following sense: default occurs if
the asset value of entity i falls below the distress barrier:

Ai(t) < Di. (1.1)

The relation between asset value and distress barrier is usually closely
related to leverage, the ratio between debt and equity.

Finally, let X1(t),X2(t),… , Xk(t) with

Xi(t) = Ai(t) −Di (1.2)

denote the distance to default of the individual entities. Note that alter-
natively the distance to default can also be defined in terms of Xi(t) as a
percentage of asset value, divided by the asset volatility (see e.g., Crosbie
and Bohn 2003).

In a one period setup—as used throughout this chapter—one is
interested at values Ai(T),Xi(T) at time T, the end of the planning
horizon. Analyzing systemic risk then means analyzing the joint distri-
bution of the distances to default Xi(t), in particular their negative parts
Xi(T)− = max{−Xi(T),0}, and the underlying random risk factors are
described by the joint distribution of asset values Ai(T).

Many approaches for modeling the asset values exist in literature. In
a classical finance setup, one would use correlated geometric Brownian
motions resulting in correlated log-normal distributions for the asset values
at the end of the planning horizon. Segoviano Basurto proposes a Bayesian
approach (Segoviano Basurto 2006); for applications, see also Jin and
Nadal de Simone (2013). In this chapter, we will use copula-based models,
as discussed later.

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om



Trim Size: 6in x 9in Zopounidis c01.tex V2 - 02/27/2015 8:05pm Page 8

8 SUPERVISORY RISK MANAGEMENT

The second component of the approach, the distress barrier, is in the sim-
plest case (Merton 2009), modeled just by the face value of overall debt for
each entity. Other approaches distinguish between short-term and long-term
debt (longer than the planning horizon). Usually, this is done by adding some
reasonable fraction of long-term debt to the full amount of short term debt;
see, for example, Servigny and Renault (2007).

Still, such classical credit default models (see, e.g., Guerra et al. 2013),
although classified as systemic risk models, neglect an important aspect:
Economic entities like banks are mutually indebted, and each amount of
debt is shown as a liability for one entity but also as an asset for another
entity. Default of one entity (a reduction in liabilities) may trigger subse-
quent defaults of other entities by reducing their asset values. We call such
models systemic models in the strict sense.

Such approaches with mutual debt have been proposed, such as in
Chan-Lau et al. (2009a; 2009b). Models neglecting this aspect are systemic
models in a broad sense; in fact, they are restricted to the effects of
systematic risk related to asset values.

The basic setup of systemic models in the strict sense can be described
as follows: LetH0

ij denote the amount of debt between entities i and j —that
is, the amount of money borrowed by entity i from entity j. We also include
debt to the nonbank sector, denoted by Hi for each entity i and credit Ci to
the nonbanking sector, both repayable (including interest) at the end of the
planning horizon, time T. Furthermore, Si(T) is the value at time T of other
financial assets held by entity i. Then the asset value of entity i at the end of
the planning horizon is given by

A0
i (T) = Si(T) +

∑
j∶j≠i

H0
ji + Ci, (1.3)

the distress barrier (in the simplest case) is

D0
i =

∑
j∶j≠i

H0
ij +Hi, (1.4)

and the distance to default can be written as

X0
i (T) = Ai(T) −D0

i = Si(T) + Ci +
∑
j∶j≠i

H0
ji −

∑
j∶j≠i

H0
ij −Hi . (1.5)

The random factors are the values Si(T) of financial assets, and (in an
extendedmodel) the creditsCi from outside the system, payable back at time.

Again, one could stop at this point and analyze the distances to
default X0

i , respectively the sum of all individual distances to default in the
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framework of classical default models. Systemic models in the strict sense,
however, go farther.

Consider now all entities in distress (defaulted banks), that is, ID = {i∶
X0
i (T) < 0}. Each of these entities is closed down and the related debt has

to be adjusted, because entity i cannot fully pay back its debts. In a simple
setup, this can be done by reducing all debts to other entities as follows:

H1
ij =

(
1 −

(
X0
i

)−
D0

i

)
H0

ij , (1.6)

H1
i =

(
1 −

(
X0
i

)−
D0

i

)
H0

i . (1.7)

Here, the factor
LGDi = (X0

i )
−∕D0

i (1.8)

is an estimate for the loss given default of entity i.
It is now possible to calculate new asset values, new distress barriers,

and new distances to default, after the default of all entities in I0D. For this
purpose, we replace in (1.3) to (1.5) all occurrences of H0

ij by H1
ij and all

occurrences of H0
i by H

1
i . This first default triggers further ones and starts a

loss cascade: It may happen that after the first adjustment step new defaults
can be observed, which results in a new set of bankrupt entities I1D after
the second round. In addition, bankruptcy of additional entities may reduce
even further the insolvent assets of entities that already defaulted in the first
round.

This process can be continued, leading to new values Xk
i (T),H

k
ij ,A

k
i (T),

Dk
i (T), and an augmented set IkD of defaulted entities after each iteration k.

The loss cascade terminates, when no additional entity is sent to bankruptcy
in step k, that is, IkD = Ik−1D .

The sequences [Hk
ij] and [Hk

i ] of debt are nonincreasing in k and, fur-
thermore, are bounded from below by zero values for all components, which
implies convergence of debt. At this point we have

Si(T) + Ci +
∑
j≠i

⎛⎜⎜⎜⎜⎝
1 −

Xj(T)
−∑

k≠j
H0

jk
+Hj

⎞⎟⎟⎟⎟⎠
H0

ji−
∑
j≠i

⎛⎜⎜⎜⎜⎝
1 −

Xi(T)
−∑

j≠i
H0

ij +Hi

⎞⎟⎟⎟⎟⎠
(H0

ij +Hi)

= Xi(T)+ −Xi(T)−Xi(T)+ ≥ 0,Xi(T)− ≥ 0. (1.9)
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This system describes the relation between the positive and negative
parts of the distances to default Xi(T) = Xi(T)+ −Xi(T)− for all entities i. It
holds with probability 1 for all entities. Note that previous literature, such as
Chan-Lau et al. (2009a; 2009b), uses fixed numbers instead of the estimated
loss given defaults in (1.9).

In fact, the system (1.9) is ambiguous, and we search for the smallest
solution, the optimization problem

min
X(T)

E

[∑
i

Xi(T)
−

]
(1.10)

subject to (1.9)

has to be solved in order to obtain the correct estimates for Xi(T)+ and
Xi(T)−.

This basic setup can be easily extended to deal with different definitions
of the distress barrier, involving early warning barriers, or accounting for
different types of debt (e.g., short-term and long-term, as indicated earlier).

MEASURING SYSTEMIC RISK

The distances to default, derived from structural models, in particular from
systemic models in the strict sense, can be used to measure systemic risk.
In principle, the joint distribution of distances to default for all involved
entities contains (together with the definition of distress barriers) all the rel-
evant information. We assume that the joint distribution is continuous and
let p(x) = p(x1,x2,… ,xk) denote the joint density of the distances to default
X1(T),X2(T),… ,Xk(T) for all entities.

Note that the risk measures discussed in the following are often defined
in terms of asset value, which is fully appropriate for systemic models in the
broader sense. In view of the previous discussion of systemic models in the
strict sense, we instead prefer to use the distances to default or loss variables
derived from the distance to default.

The first group of risk measures is based directly on unconditional and
conditional default probabilities. See Guerra et al. (2013) for an overview
of such measures. The simplest approach considers the individual distress
probabilities

PDi = P(Xi(T) < 0)

= ∫
xi<0

⎡⎢⎢⎣
+∞

∫
−∞

· · ·

+∞

∫
−∞

p
(
x1,x2,… ,xk

)
dx1 · · ·dxi−1dxi+1 · · ·dxk dxi . (1.11)
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The term in squared brackets is the marginal density of Xi(T), which
means that it is not necessary to estimate the joint density for this mea-
sure. In similar manner, one can consider joint distributions for any subset
I ⊆ {1,… ,k} of entities by using the related (joint) marginal density pI(x),
which can be obtained by integrating the joint density p(x) over all other
entities, that is, j ∉ I.

Joint probabilities of distress for a subset I can be achieved by

PDI = P(∀i ∈ I∶ Xi(T) < 0) = ∫
xi1<0

· · · ∫
xikI<0

pI(xi1 ,… ,xikI )dxi1 …dxikI ,

(1.12)
where the set I contains the elements i1, i2,… , ikI . Of special interest are
the default probabilities of pairs of entities (see, e.g., Guerra, et al., 2013).
Joint probabilities of distress describe tail risk within the chosen set I. If I
represents the whole system (i.e., it contains all the entities), then the joint
probability of distress can be considered as a tail risk measure for systemic
risk (see, e.g., Segoviano & Goodhart, 2009).

Closely related are conditional probabilities of distress, that is, the prob-
ability that entity j is in distress, given that entity j is in distress, which can
be written as

PDj|i = P(Xj(T) < 0|Xi(T) < 0) =
PD{i,j}

PDi
. (1.13)

These conditional probabilities can be presented by a matrix with PDj|i as
its ijth matrix element, the distress dependency matrix.

While conditional distress probabilities contain important information,
it should be noted that they only reflect the two-dimensional marginal distri-
butions. Conditional probabilities are often used for analyzing the interlink-
age of the system and the likelihood of contagion. However, such arguments
should not be carried to extremes. Finally, conditional probabilities do not
contain any information about causality.

Another systemic measure related to probabilities is the probability of
at least one distressed entity; see Segoviano and Goodhart (2009) for an
application to a small system of four entities. It can be calculated as

P1 = 1 − P(X1 ≥ 0,… ,Xk ≥ 0) (1.14)

Guerra et al. (2013) propose an asset-value-weighted average of individual
probabilities of distress as an upper bound for the probability of at least
one distressed entity. Probabilities of exactly one, two, or another number
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of distressed entities are hard to calculate for large systems because of the
large number of combinatorial possibilities.

An important measure based on probabilities is the banking stability
index, measuring the expected number of entities in distress, given that at
least one entity is in distress. This measure can be written as

BSI =

k∑
i=1

PDi

P1
. (1.15)

Other systemic risk measures based directly on the distribution of dis-
tances to default. Adrian and Brunnermeier (2009) propose a measure called
conditional value at risk,1 CoVaR=. It is closely related to value at risk, which
is the main risk measure for banks under the Basel accord.

CoVaR= is based on conditional versions of the quantile at level 𝛽 for
an entity j given that entity i reaches the 𝛼-quantile. In terms of distances to
default, this reads

CoVaR=
𝛼,𝛽

(j | i) = inf
{
𝛾 ∈ ℝ∶P

(
Xj (T) ≤ 𝛾 |Xi(T) = VaR𝛼(Xi(T))

) ≥ 𝛽
}
,

(1.16)
where

VaR𝛼(i) = inf
{
𝛾 ∈ ℝ∶P

(
Xi (T) ≤ 𝛾

) ≥ 𝛼
}
. (1.17)

The contribution of entity i to the risk of entity j then is calculated as

ΔCoVaR𝛼
=(j | i) = CoVaR𝛼,𝛼

=(j | i) − CoVaR0.5,0.5
=(j | i). (1.18)

That is, the conditional value at risk at level 𝛼 is compared to the condi-
tional value at risk at the median level. From all the ΔCoVaR𝛼

=(j | i) values,
it is possible to construct another kind of dependency matrix.

This idea can also be applied to the system as awhole: IfXj(T) is replaced
by X(T) =

∑k
i=1Xi(T), the distance to default of the whole system, (1.16) to

(1.18), leads to a quantityΔCoVaR𝛼
=(j | i) that measures the impact of entity

i on the system. In this way one is able to analyze notions like “too big to
fail” or “too interconnected to fail.”

In contrast to probability-based measures, CoVaR emphasizes the role
of potential monetary losses. This approach can be carried forward, leading
to the idea that systemic risk should be related to the losses arising from

1Conditional value at risk should not be confused with general risk measure with the
same name, which is also known as expected tail loss or average value at risk.
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adverse events. Given a model for the distances to default Xi(T), the overall
loss of the system can be written as

Ltot =
k∑
i=1

Xi (T)−. (1.19)

Ltot covers all credit losses in the whole system, both from interbank
credits and from credits to the public.

From the viewpoint of a state, this notion of total loss may be seen as
too extensive. One may argue that only losses guaranteed by the state are
really relevant. Definition (1.19) therefore depicts a situation in which a state
guarantees all debt in the system, which can be considered as unrealistic.
However, in most developed countries, the state guarantees saving deposits
to a high extend, and anyhow society as a whole will have to bear the con-
sequences of lost debt from outside the banking system. Therefore, a further
notion of loss is given by

Lsav =
k∑
i=1

LGDi ⋅Hi , (1.20)

which describes the amount of lost nonbanking debt For the structural
model, which has been described in the previous section, loss given default
can be calculated using (1.8) and (1.9).

In general, the notion of loss depends on the exact viewpoint (loss to
whom). We will therefore use the symbol L to represent any kind of loss
variable in the following discussion of systemic risk measures.

An obvious measure is expected loss—that is, the (discounted) expec-
tation of the risk variable L. For simple structural models like (1.2), this
measure can be calculated from the marginal distribution of asset values,
respectively, of distances to default. Modeling the joint distributions is not
necessary. Note that this is different for the strict systemic model (1.9).

The expectation can be calculated with respect to an observed (esti-
mated) model, or with respect to a risk-neutral (martingale) model. Using
observed probabilities may account insufficiently for risk, which contradicts
the aim of systemic risk measurement. Using risk-neutral valuation seems
reasonable from a finance point of view and has been used, for example, in
Gray and Jobst (2010) or Gray et al. (2010). However, it should be kept in
mind that the usual assumptions underlying contingent claims analysis—in
particular, that the acting investor is a price taker—are not valid if the
investor has to hedge the whole financial system, which clearly would be
the case when hedging the losses related to systemic risk.
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Using expectation and the concept of loss cascades, Cont et al. (2010)
define a contagion index as follows: They define first the total loss of a loss
cascade triggered by a default of entity i and the contagion index of entity i
as the expected total loss conditioned on all scenarios that trigger the default
of entity i.

Clearly, the expectation does not fully account for risk. An obvious idea
is to augment expectation by some risk measure 𝜌, which, with weight a,
leads to

𝜋𝜌(L) = E[L] + a𝜌(L). (1.21)

Typical choices of 𝜌 are dispersion measures like the variance or the
standard deviation. Such measures are examples of classical premium cal-
culation principles in insurance. Further, more general premium calculation
principles are for example, the distortion principle or the Esscher premium
principle. For an overview on insurance pricing, see Furmann and Zitikis
(2008). In the context of systemic risk, the idea to use insurance premiums
was proposed in Huang et al. (2009). In this chapter, empirical methods were
used for extracting an insurance premium from high-frequency credit default
swap data. Even more generally, it should be noted that any monetary risk
measure—in particular, coherent measures of risk—can be applied to the
overall loss in a system. See Kovacevic and Pflug (2014) for an overview and
references.

In this broad framework, an important class of risk measures is given
by the quantiles of the loss variable L:

Q𝛼(L) = inf {l ∶ P{L ≤ l} ≥ 𝛼}. (1.22)

With probability 𝛼, the loss will not be higher than the related quantile.
Quantiles are closely related to the value at risk (VaR), which measures

quantiles for the deviation of the loss from the expected loss. Note the slight
difference between (1.22) and (1.17), because (1.17) is stated in terms of
distance to default and (1.12) in terms of loss.

Q𝛼(L) can also be interpreted in an economic way, as follows. Assume
that a fund is built up in order to cover systemic losses in the banking sys-
tem. If we ask how large the fund should be, such that it is not exhausted,
with probability 𝛼 over the planning period, then the answer will be QL(𝛼).
This idea can also be reversed. Assume now that a fund of size q has been
accumulated to deal with systemic losses. Then the probability that the fund
is not exhausted,

FL(q) = P(L ≤ q), (1.23)

is a reasonable systemic risk measure. Clearly, FL(q) is the distribution func-
tion of the loss, and q is the quantile at level FL(q).
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Unfortunately, quantiles do not contain any information about those
(1 − α)100 percent cases, in which the loss lies above the quantile. Two dif-
ferent distributions, which are equal in their negative tails, but very different
in the positive tails, are treated equally.

The average value at risk (AVaR) avoids some drawbacks of quantiles. It
is defined for a parameter 𝛼, which again is called level. The AVaR averages
the bad scenario,

AVaR𝛼(L) = E[L|L > Q𝛼(L)]. (1.24)

The latter formula justifies the alternative name conditional value at risk
(CVaR), which is frequently used in finance. In insurance, the AVaR is known
as conditional tail expectation or expected tail loss.

The effect of individual banks can be analyzed in obvious manner by
defining conditional versions of the quantile or AVaR loss measures—that
is, by conditioning the overall loss on the distance to default of an individual
bank in the style of CoVaR; see (1.16).

SYSTEMIC RISK AND COPULA MODELS

The distinction between risk factors that are related to individual perfor-
mances and risk factors that are a consequence of the interrelations of the
economic agents has its parallel in a similar distinction for probability dis-
tributions or stochastic processes:

Suppose that X1(t),… ,Xk(t) describe the performance processes of k
economic agents. The individual (marginal) processes are assumed to follow
certain stochastic models as discrete Markov processes, diffusion models,
or jump-diffusion models. The joint distribution, however, depends on the
copula process, which links the marginal processes.

To simplify, suppose only a single-period model is considered and that
the performance after one period is X1,… , Xk. If this vector has marginal
cumulative distribution functions F1,… , Fk (meaning that P(Xi ≤ u) =
Fi(u)), then the joint distribution of the whole vector can be represented by

P(X1 ≤ u1,… ,Xk ≤ uk) = C(F1(u1),… ,Fk(uk)), (1.25)

where C is called the copula function. Typical families of copula functions
are the normal copula, the Clayton copula, the Gumbel copula or—more
generally—the group of Archimedean copulas.

While the marginal distributions describe the individual performances,
the copula function models the interrelations between them and can thus
be seen as representing the systemic component. In particular, the relation
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between underperformance of agent i and agent j can be described on the
basis of the copula. To this end, we use the notion of conditional value at risk
(CoVaR), as already described. FollowingMainink and Schaaning (2014) we
use the notations

CoVaR=
𝛼,𝛽

(Y |X) = VaR𝛽(Y |X = VaR𝛼(X))

for the notion of CoVAR introduced by Adrian and Brunnermeier (2009)
and

CoVaR𝛼,𝛽(Y |X) = VaR𝛽(Y |X ≤ VaR𝛼(X))

for the variant introduced by Girardi and Ergün (2012). Keep in mind that
we work here with profit and loss variables and not with pure loss variables.
The latter variant can be expressed in terms of the conditional copula

CV|U≤𝛼(v) =
P(V ≤ u,U ≤ 𝛼)

P(U ≤ 𝛼)
= C(𝛼, v)

𝛼
.

Its inverse
C−1
V|U≤𝛼(𝛽) = inf {v∶ CV|U≤𝛼(v) ≥ 𝛽}

and the marginal distribution of X can be used to write the CoVaR in the
following way:

CoVaR𝛼,𝛽(Y |X) = F−1X (C−1
V|U≤𝛼(𝛽)).

For the CoVaR=
𝛼,𝛽

(Y |X), the conditional copula

CV|U=𝛼(v) =
𝜕

𝜕v
C(𝛼, v)

is needed. With

C−1
V|U=𝛼(𝛽) = inf {v∶ CV|U=𝛼(v) ≥ 𝛽}

one gets
CoVaR=

𝛼,𝛽
(Y |X) = F−1X (C−1

V|U=𝛼(𝛽)).

Notice that both notions of CoVaR depend only on the copula and the
marginal distribution of X.

If underperformance of an agent means that its performance falls below
an 𝛼-quantile, thenCV|U≤𝛼(𝛼) = C(𝛼,𝛼)

𝛼
indicates the probability that the other

agent also underperforms. CoVaR𝛼,𝛼(Xi|Xj) gives the necessary risk reserve
for agent i to survive a possible default of agent j. For a system of k agents,
the notion of CoVaR𝛼,𝛽 can be generalized in a straightforward manner to k
components.
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Example 1. Consider a financial institution A, which faces a gamma-
distributed loss with mean 10 and variance 20. Then A’s unconditional 99%
VaR is 23.8.

If A’s performance related to B’s performance with a normal copula with
correlation 𝜌, then A’s conditional VaR (the CoVaR) increases with increas-
ing 𝜌, see Table 1.1.

Example 2. Consider a system of seven banks, where the performances
Xi, i = 1,… ,7 are related by a normal copula stemming from a correlation
matrix with all off-diagonal elements 𝜌 (the diagonal elements are 1). Sup-
pose that the first bank defaults if its performance drops below the 5 percent
quantile. Given the copula, one may determine the number of other banks
that also fall below the 5 percent quantile (i.e., default as a consequence
of the first bank’s default). Figures 1.1 and 1.2 show the distribution of
these numbers for the choice of 𝜌 = 0, 𝜌 = 0.2, 𝜌 = 0.5 and 𝜌 = 0.8. One may
observe that in the independent case (𝜌 = 0) the other banks are practically
not affected by the default of one bank, while for higher correlated cases a
contagion effect to other banks can be easily seen.

A very interdependent banking system carries a high systemic risk. It has
therefore been proposed to limit the dependencies by creating quite indepen-
dent subsystems. Example 3 gives evidence for this argument.

TABLE 1.1 Conditional VaR and correlation for example 1

𝜌 0.0 0.2 0.5 0.8
CoVaR0.99,0.99 23.8 26.6 30.0 31.4

FIGURE 1.1 The distribution of the number of affected banks using the
assumptions of Example 2. Left: the uncorrelated case (𝜌 = 0). Right: the weakly
correlated case (𝜌 = 0.2).
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FIGURE 1.2 The distribution of the number of affected banks using the
assumptions of Example 2. Left: the medium correlated case (𝜌 = 5). Right: the
highly correlated case (𝜌 = 0.8).

FIGURE 1.3 Left: All banks are independent, VaR0.99 = 25; Right: All correlations
are 𝜌 = 0.2, VaR0.99 = 29.

FIGURE 1.4 Left: All correlations are 𝜌 = 0.5, VaR0.99 = 41; Right: All correlations
are 𝜌 = 0.8, VaR0.99 = 57.
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FIGURE 1.5 The system consists of two independent subsystems with internal
correlations 𝜌. Left: 𝜌 = 0.2, VaR0.99 = 28; Right: 𝜌 = 0.5, VaR0.99 = 35.

FIGURE 1.6 The system consists of two independent subsystems with internal
correlations 𝜌. Left: 𝜌 = 0.8, VaR0.99 = 44; Right: One subsystem has 𝜌 = 0.2, the
other 𝜌 = 0.8, VaR0.99 = 32.

Example 3. Here, we consider seven banks, each of which has a perfor-
mance given by a negative gamma distribution with mean 100 and variance
200, but shifted such that with probability 5 percent a negative performance
happens, which means bankruptcy. The total losses of the system are cal-
culated on the basis of a normal copula linking the individual losses. By
assuming that the government (or the taxpayer) takes responsibility for cov-
ering total losses up to the 99 percent quantile, this quantile (the 99 percent
VaR) can be seen as a quantization of the systemic risk.

In Figures 1.3 to 1.6, we show in the upper half a visualization of the
correlations (which determine the normal copula) by the thickness of the arcs
connecting the seven nodes representing the banks. The lower half shows
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the distribution of the total systemic losses, where also the 99 percent VaR
is indicated. As one can see, the higher correlation increases the systemic
risk. If the system is divided into independent subsystems, the systemic risk
decreases.

CONCLUSIONS

Systemic financial risk is an important issue in view of the distress the bank-
ing systems all over the world have experienced in the recent years of crises.
Even if breakdowns are prevented by the government, the related societal
costs are extremely high.

We described the measurement of systemic risk, based on the struc-
tural approach originating from structural credit risk models. In particular,
the cascading effects that are caused by mutual debt between the individ-
ual banks in the system were analyzed in detail. Furthermore, we related
the notion of systemic risk to the copula structure, modeling dependency
between the performances of the individual banks. The effects of different
levels of dependency on the total systemic risk in terms of the value at risk
of total losses were demonstrated by examples.
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