Contents

Preface		xvii
Acknowledgme	ents	xxiii
PART I	FINANCIAL MODELING STRUCTURE AND DESIGN: STRUCTURE AND MECHANICS OF DEVELOPING FINANCIAL MODELS FOR CORPORATE FINANCE AND PROJECT FINANCE ANALYSIC	
CHAPTER 1	Financial Modeling and Valuation Nightmares: Problems That Financial Models Cannot Solve	3
CHAPTER 2	Becoming a Black Belt Modeler	9
CHAPTER 3	General Model Objectives of Structuring Transactions, Risk Analysis, and Valuation	13
CHAPTER 4	The Structure of Alternative Financial Models	17
	Structure of a Corporate Model: Incorporating History and Deriving Forecasts from Historical Analysis Use of the INDEX Function in Corporate Models Easing the Pain of Acquiring PDF Data Structure of a Project Finance Model That Accounts	21 26 28
	for Different Risks in Different Phases over the Life of a Project	30
	Reconciliation of Internal Rate of Return in Project Finance with Return on Investment in Corporate Finance	33
	Structure of an Acquisition Model: Alternative Transaction Prices and Financing Terms	35

vi	Con	tents
	Structure of an Integrated Merger Model: Forecasting Earnings per Share	37
CHAPTER 5	Avoiding Bad Programming Practices and Creating Effective Auditing Processes	41
	How to Make Financial Models More Efficient and Accurate	44
CHAPTER 6	Developing and Efficiently Organizing Assumptions	55
	Assumptions in Demand-Driven Models versus Supply-Driven Models: The Danger of Overcapacity in an Industry Creating a Flexible Input Structure for Model	55
	Assumptions	60
	Alternative Input Structures for Project Finance and Corporate Finance Models	62
	Setting Up Inputs with Code Numbers and the INDEX Function	62
CHAPTER 7	Structuring Time Lines	67
	Timing in Corporate Finance Models: Distinguishing the Historical Period, Explicit Period, and Terminal Period	67
	Development to Decommissioning: Phases in the Life of a Project Finance Model	69
	Timing in Acquisition Models: Separating the Transaction Period, the Holding Period, and the Exit Period	70
	Structuring a Time Line to Measure History, Explicit Feriods, and Terminal Periods in Corporate Models	
	and Risk Phases in Project Finance Models	72
	Computing Start of Period and End of Period Dates TRUE and FALSE Switches in Modeling Time Periods	73 75
	Computing the Age of a Project in Years on a Monthly,	1)
	Quarterly, or Semiannual Basis	77
	The Magic of a HISTORIC Switch in a Corporate Model	78
	Transferring Data from a Corporate Model to an Acquisition Model Using MATCH and INDEX Functions	82
CHAPTER 8	Projecting Revenues, Expenses, and Capital Expenditures to Derive Pretax Cash Flow	85
	Transparent Calculations of Pretax Cash Flow	85

Contents		vii
	Inflation and Growth Rates in Calculations of Pretax	
	Cash Flow	88
	Valuation Analysis from Prefinancing, Pretax Cash Flow	90
CHAPTER 9	Moving from Pretax Cash Flow to After-Tax Free Cash Flow	91
	Working Capital Analysis	91
	Problems in Computing Depreciation Expense in Corporate Models Involving Asset Retirements	92
	Portfolios of Assets with a Vintage Process	94
	Accounting for Asset Retirements in Corporate Models	99
	Alternative Methods for Deriving Retirements Associated	102
	with Existing Assets in Corporate Models	103 109
	Depreciation Issues in Project Finance Models Modeling the Change in Deferred Taxes in Corporate	109
	Models	110
	Adjusting the Tax Basis in an Acquisition	111
CHAPTER 10	Adding Debt to a Corporate or Project Finance Model by Programming Cash Flow Waterfalls	113
	Adding the Debt Schedule to a Financial Model	114
	Modeling Scheduled Debt Repayments	116
	Connecting Debt to Cash Flow in Corporate Models	117
	With a Structured Process, You Can Model Any Cash	
	Flow Waterfall	119
	Defaults on Debt and Measuring the Debt Internal Rate of Return	124
	Assessing Risk and Return Characteristics of	141
	Subordinated Debt	127
CHAPTER 11	Alternative Calculations of Equity Distributions	131
	Modeling Dividend Distributions	132
	Computing a Target Capital Structure through Simulating New Equity Issues and Buybacks	136
CHAPTER 12	Putting Together Financial Statements and Calculating Income Taxes	139
	-	

viii		Contents
	Computation of Taxes Paid and Taxes Deferred Cash Flow Statement and Balance Sheet	140 144
PART II	ANALYZING RISKS WITH FINANCIAL MODELS: SENSITIVITY ANALYSIS, SCENARIO ANALYSIS, BREAK-EVEN ANALYSIS, TIME SERIES, AND MONTE CARLO SIMULATION	
CHAPTER 13	Risk Assessment: The Centerpiece of All Valuation, Contracting, and Credit Issues in Finance	149
	Six Alternative Ways to Assess the Risk of a Company, a Project, or a Contract	151
	Using Direct Risk Assessment to Measure Cash Flow and Financial Ratios	154
CHAPTER 14	Defining, Describing, and Assessing Rick in a Risk Allocation Matrix	159
CHAPTER 15	Presentation of Risk Analysis through Adding Sensitivity Analysis to Financial Models	165
	Setting Up Data for Making Graphs by Converting Periodic Data into Annual, Semiannual, or Quarterly DataUsing the INDIRECT Function to Automate Conversion to Time Period Data	167 172
CHAPTER 16	Making Flexible Graphs for Sensitivity Analysis Using Financial Models to Establish Break-Even Points for Key Input Variables with Data Tables	173 185
	Establishing Break-Even Criteria When Analyzing Financial Models	188
	Mechanics of Using Data Tables to Compute Break-Even Points Automatically	n 193
	Creating Data Tables Using VBA Instead of the Data Table Tool	201
	Summary of Break-Even Analysis	205
CHAPTER 17	Constructing Flexible Scenario Analysis for Risk Assessment	207

	Mechanics of Scenario Analysis	210
	Using VBA Code to Create a Scenario Analysis Getting the Best of Both Worlds: Creating a Special Custom Scenario That Allows Use of Spinner	221
	Buttons and Drop-Down Boxes	223
CHAPTER 18	Generating Tornado Diagrams, Spider Charts, and Waterfall Graphs	231
	Tornado Diagrams That Display Which Variables Have the Largest Effect on Value and Which Variables	222
	Have the Least Effect on an Output Variable Creating a Tornado Diagram by Extending Scenario Analysis	232 234
	Creating a Tornado Diagram Using a Two-Way Data Table	234
	Spider Diagrams That Illustrate How Each Range in Input Variables Affects an Output Variable	246
	How to Create a Spider Diagram Using a Two-Way Data Table	247
	Presenting Sensitivity Analysis with a Waterfall Chart	250
CHAPTER 19	Adding Probabilistic Risk Analysis and Time Series Equations to Financial Models	253
	Definition of Some Terms for Adding Stochastic Analysis to Your Financial Models	256
	Using Probability Distributions with Spreadsheet Functions Rather Than Equations with Greek Letters	258
CHAPTER 20	Taking the Mystery out of Applying Time Series Analysis and Monte Carlo Simulation in Financial Models	263
	Step-by-Step Procedure to Incorporate a Monte Carlo Simulation into Your Models	266
CHAPTER 21	Constructing Probability Distributions with Trends, Mean Reversion, Price Boundaries, and Correlations among Variables	277
	Starting Point for Developing Time Series Equations— Brownian Motion and Normal Distributions	279

ix

X		Contents
	Testing the Assumption That Input Variables Are Normally Distributed	281
	Price Boundaries and Short-Run Marginal Cost	285
	Mean Reversion and Long-Run Equilibrium Analysis	286
	Modeling Correlations among Variables in Time Series Equations	289
CHAPTER 22	The Difficult Problem of Estimating Volatility, Mean Reversion, Time Trends, Correlations, and Price	205
	Boundaries from Historical Data or Market Data	295
	Calculation of Volatility from a Random Walk Process	296
	Attempting to Measure the Presence of Mean Reversion in Historical Data	297
	Attempting to Measure the Presence of Mean Reversion	297
	by Evaluating Changes in Periodic Volatility	300
	Risk Analysis Summary	303
	che	
PART III	ADVANCED CORPORATE MODELING: MODELING TERMINAL VALUE WITH STABLE RATIOS IN THE DISCOUNTED CASH FLOW MODEL, DERIVING IMPLIE MULTIPLES, AND COMPUTING THE BRIDGE BETWEE EQUITY VALUE AND ENTERPRISE VALUE	
CHAPTER 23	Overview of issues When Computing Normalized	
	Cash Flow and Terminal Value	307
CHAPTER 24	Computing the Return on Invested Capital for Historical and Projected Periods in Corporate Models	313
	Working with a Free Cash Flow Perspective, an Equity Cash Flow Perspective, or Both in Computing Financial Ratios	314
	Presenting Return on Invested Capital in Financial Models	316
CHAPTER 25	Calculation of Invested Capital	321
	Dissecting the Financial Structure of a Corporation to Understand the Bridge from Enterprise Value to Equity Value	323

	Drawing an Imaginary Line underneath EBIT to Understand the Financial Structure of a Corporation Constructing a Long-Term Model to Create Proof of Corporate Finance Concepts	326 328
CHAPTER 26	Complex Items in Balance Sheet Analysis: Deferred Taxes, Operating Cash, and Derivative Assets	337
	Treatment of Accumulated Deferred Taxes Arising from Depreciation	337
	Classification of Operating Cash That Produces Interest Income below the EBITDA Line	341
	Treatment of Derivative Assets and Liabilities Depending on How Derivatives Affect EBITDA	344
CHAPTER 27	Four General Terminal Value Methods	347
	Method 1: Stable Growth Using the $(1 + g)/(WACC - g)$ Formula	349
	Method 2: Value Driver Method - Incorporating the Return Relative to Cost of Capital in Terminal Value	351
	Method 3: Use of Multiples from Comparative Analysis	352
	Method 4: Derived Multiple Formula	353
	A.	050
CHAPTER 28	Terminal Value and Philosophy: Company Growth Rates and Overall Economic Growth	357
	Computing Transition Periods Using Compound	
	Growth Rates and Switch Variables	359
	Computing Explicit Period Cash Flow and Terminal Value with Different Starting and Ending Points	362
	Computing Value with Changing Weighted Average	502
	Cost of Capital and a Midyear Convention	365
CHAPTER 29	Normalizing Terminal Year Cash Flows for Stable Working Capital Investment	369
	Effect of Changes in Growth on Working Capital Investment, Capital Expenditures, Depreciation, and Deferred Taxes	370
	Developing a Simple Equation for Normalizing	
	Working Capital	371

xi

		Contents
	Incorporating Terminal Period Normalized Cash Flow in a Corporate Model	a 375
CHAPTER 30	Relationship of Growth, Capital Expenditures, Depreciation, and Return on Investment	377
	The Long-Term Stable Ratio of Capital Expenditures to Depreciation and the Ratio of Depreciation Expense to Net Plant	378
	Computing the Ratio of Capital Expenditures to Depreciation When Historical Growth Differs from Prospective Growth	385
	Computing the Ratio of Capital Expenditures to Depreciation	390
	Implementing the Stable Ratio of Capital Exocuditures to Depreciation in Valuation Analysis	393
CHAPTER 31	Computing Normalized Deferred Tax Changes	399
	Stable Ratio of Deferred Tax to Capital Expenditure without Change in Growth Rate	400
	Normalized Deferred Tex with Change in Growth Rate	404
CHAPTER 32	Terminal Value and the Ability of a Company to Earn Returns above the Cost of Capital	407
	The Myth of Convergence of Return on Capital to Cost of Capital	408
CHAPTER 33	Errors and Distortions in Applying the Value Driver Formula	415
	Deriving the Value Driver Formula for the Price/Earnings Ratio and Equity Value	416
	Deriving Implicit Assumptions about the Progression of the Incremental Return on Equity in the Equity-Based Value Driver Formula	418
	Deriving the Value Driver Formula Using the Return on Invested Capital and the Weighted Average Cost of Capital	425
	Biases in the Value Driver Formula in a Case with Only Working Capital	427

Contents		xiii
	Problems of the Value Driver Formula When Invested Capital Includes Net Plant	432
CHAPTER 34	Computing Implied Price/Earnings Ratios for Use in Terminal Value Calculations	435
	Model for Deriving the P/E Ratio from Value Drivers	438
CHAPTER 35	Computing an Implied EV/EBITDA Ratio in Terminal Value Calculations	445
	Simulation Model to Derive Implied EV/EBITDA Ratio from Invested Capital with Constant Growth	446
	Function to Derive Implied EV/EBITDA Ratio	448
	Comprehensive Analysis to Derive Implied EV/CBITDA Ratio with Changing Growth, Deferred Taxes, and Working Capital	449
CHAPTER 36	Developing Value Drivers for P/E and EV/EBITDA Ratios with Benchmarking and Regression	453
	Benchmarking Multiples to Derive Cost of Capital	454
	Downloading Data for a Sample of Companies from the Internet into a Spreadsheet	455
	Running Regression Analysis on Financial Data	458
	Advanced Corporate Modeling Summary	460
PART IV	COMPLEX ISSUES: CIRCULAR REFERENCES AND OTHER COMPLEX ISSUES FROM FINANCIAL STRUCTURING IN PROJECT FINANCE AND CORPORATE FINANCE MODELS	
CHAPTER 37	Resolving Circular References in Acquisition Models: Computing Interest Expense on the Average Balance of Debt	465
	Circular References and Use of Opening Balances in Annual Models	466
	Alternative Techniques for Solving Circular Reference Logic Problems in Financial Models	468
	Resolution of Circular References from a Cash Flow Sweep Using the Iteration Button	470

	Solving Circular References from Cash Sweeps with	
	Goal Seek and Solver	4
	Solving Basic Circular References from Cash Sweeps with a Horrible Copy and Paste Macro	4
	Solving Circular References Related to a Cash Sweep Using Algebra	2
	Solving Circular References with Functions That Iterate around Equations That Cause the Problem	4
CHAPTER 38	Creating a Structured Cash Flow Process in a Corporate Model to Resolve Circular References	4
	Structuring a Corporate Model with a Cash Flow Waterfall	2
	Resolving Circular References in a Corporate Model Using an Iterative User-Defined Function	2
CHAPTER 39	Overview of Complex Project Finance Modeling Structuring Issues	2
	Difficult Project Finance Problems: Structuring versus Risk Analysis Elements of a Model	4
	Items in Project Finance Models That Cause Circularity	4
CHAPTER 40	Funding Techniques in Project Finance and the Associated Circular Reference Problems	2
	Case 1: No Circular Reference—Pro-Rata Funding, Interest Paid during Construction, and Debt Size	
	from Cash Flow	2
	Case 2: Circular Reference from Pro-Rata Funding with Capitalized Interest or Debt Ratio Input	4
	Case 3: Pro-Rata Funding with Capitalized Fees	4
	Case 4: Cascade with Equity Funded before Debt That	-
	Can Be Solved with Backward Induction	4
	Case 5: Bond Financing in a Single Period	4
CHAPTER 41	Debt Sculpting in a Project Finance Model	4
	Sculpting Method 1: Use of Solver	5
	Sculpting Method 2: Goal Seek and Algebra	4
	Sculpting Method 3: Net Present Value of Target Debt	

Contents		XV
	Cardating Mathead 4. Declarated Induction	524
	Sculpting Method 4: Backward Induction Sculpting Approaches in Complex Cases with Taxes,	524
	Debt Service Reserve Accounts, and Interest Income Solving Difficult Sculpting Problems with User-Defined Functions	526 532
CHAPTER 42	Automating the Goal Seek Process for Annuity and Equal Installment Repayments	539
	Debt Sizing with Level Repayments or Annuity Repayments Using a Goal Seek Macro	541
	Computing Debt Size for Equal Installment Structuring with a User-Defined Function	542
	Computing Debt Size for Annuity Structure with User-Defined Function	545
CHAPTER 43	Modeling Debt Service Reserve Accounts	547
	Structuring the Debt Service Reserve Account in a Project Finance Model	548
	Avoiding Circular References in Funding Debt Service Reserve Accounts through Separating Construction Debt from Permanen, Debt	550
	Avoiding Circular References Due to Cash Flow Sweeps and the Debt Service Reserve Account	552
CHAPTER 44	Modeling Maintenance Reserve Accounts	555
	MRA Case 1: Constant Maintenance Time Period Increments and Level Expenditures	556
	MRA Case 2: Constant Time Period Increments and Changing Expenditures	557
	MRA Case 3: Varying Time Period Increments and Changing Expenditures Using the MATCH Function	559
CHAPTER 45	Refinancing and Valuing a Project Given Risk Changes over the Life of a Project	563
	Computed Internal Rate of Return with Changes in Discount Rate over Project Life	563
	Effects of Refinancing on the Value of a Project	565
	Mechanics of Implementing Refinancing into a Project Finance Model	568

xvi		Conten
CHAPTER 46	Covenants and Cash Flow Sweeps in Project Finance Models	57
	Mechanics of Modeling Covenants and Cash Flow Sweeps	57
CHAPTER 47	Asset Portfolios, Progress Payments, and Lease Rolls in Real Estate Models	57
	Modeling a Single Real Estate Project	57
	Modeling Multiple Projects That Are Part of a Combined Portfolio with Percent of Time Function	58
	Modeling a Portfolio with the INDEX Function and Data Table Tools	58
About the Author		58
About the Website		59
Index	KSHU .	59
	Modeling a Portfolio with the INDEX Function and Data Table Tools	
	KR.	